Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
Structure. 2010 Nov 10;18(11):1512-21. doi: 10.1016/j.str.2010.08.014.
Plants and microorganisms reduce environmental inorganic nitrogen to ammonium, which then enters various metabolic pathways solely via conversion of 2-oxoglutarate (2OG) to glutamate and glutamine. Cellular 2OG concentrations increase during nitrogen starvation. We recently identified a family of 2OG-sensing proteins--the nitrogen regulatory protein NrpR--that bind DNA and repress transcription of nitrogen assimilation genes. We used X-ray crystallography to determine the structure of NrpR regulatory domain. We identified the NrpR 2OG-binding cleft and show that residues predicted to interact directly with 2OG are conserved among diverse classes of 2OG-binding proteins. We show that high levels of 2OG inhibit NrpRs ability to bind DNA. Electron microscopy analyses document that NrpR adopts different quaternary structures in its inhibited 2OG-bound state compared with its active apo state. Our results indicate that upon 2OG release, NrpR repositions its DNA-binding domains correctly for optimal interaction with DNA thereby enabling gene repression.
植物和微生物将环境中的无机氮还原为铵,然后仅通过将 2-氧戊二酸(2OG)转化为谷氨酸和谷氨酰胺,使铵进入各种代谢途径。在氮饥饿期间,细胞中的 2OG 浓度增加。我们最近鉴定了一系列 2OG 感应蛋白——氮调节蛋白 NrpR——它与 DNA 结合并抑制氮同化基因的转录。我们使用 X 射线晶体学确定了 NrpR 调节结构域的结构。我们确定了 NrpR 的 2OG 结合裂隙,并表明与 2OG 直接相互作用的残基在不同种类的 2OG 结合蛋白中保守。我们表明,高浓度的 2OG 抑制了 NrpR 与 DNA 结合的能力。电子显微镜分析记录表明,与活性 apo 状态相比,NrpR 在其受抑制的 2OG 结合状态下采用不同的四级结构。我们的结果表明,一旦 2OG 释放,NrpR 就会重新定位其 DNA 结合结构域,以与 DNA 进行最佳相互作用,从而实现基因抑制。