Suppr超能文献

两种宿主细胞质效应物通过抑制宿主防御来引发大豆疫霉的发病机制。

Two host cytoplasmic effectors are required for pathogenesis of Phytophthora sojae by suppression of host defenses.

机构信息

Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.

出版信息

Plant Physiol. 2011 Jan;155(1):490-501. doi: 10.1104/pp.110.166470. Epub 2010 Nov 11.

Abstract

Phytophthora sojae encodes hundreds of putative host cytoplasmic effectors with conserved FLAK motifs following signal peptides, termed crinkling- and necrosis-inducing proteins (CRN) or Crinkler. Their functions and mechanisms in pathogenesis are mostly unknown. Here, we identify a group of five P. sojae-specific CRN-like genes with high levels of sequence similarity, of which three are putative pseudogenes. Functional analysis shows that the two functional genes encode proteins with predicted nuclear localization signals that induce contrasting responses when expressed in Nicotiana benthamiana and soybean (Glycine max). PsCRN63 induces cell death, while PsCRN115 suppresses cell death elicited by the P. sojae necrosis-inducing protein (PsojNIP) or PsCRN63. Expression of CRN fragments with deleted signal peptides and FLAK motifs demonstrates that the carboxyl-terminal portions of PsCRN63 or PsCRN115 are sufficient for their activities. However, the predicted nuclear localization signal is required for PsCRN63 to induce cell death but not for PsCRN115 to suppress cell death. Furthermore, silencing of the PsCRN63 and PsCRN115 genes in P. sojae stable transformants leads to a reduction of virulence on soybean. Intriguingly, the silenced transformants lose the ability to suppress host cell death and callose deposition on inoculated plants. These results suggest a role for CRN effectors in the suppression of host defense responses.

摘要

大豆疫霉编码了数百种具有信号肽的假定宿主细胞质效应子,这些效应子具有保守的 FLAK 基序,被称为卷曲和坏死诱导蛋白(CRN)或卷曲蛋白。它们在发病机制中的功能和机制大多未知。在这里,我们鉴定了一组具有高度序列相似性的五个大豆疫霉特异性 CRN 样基因,其中三个是假定的假基因。功能分析表明,这两个功能性基因编码具有预测核定位信号的蛋白,当在烟草原生质体和大豆(Glycine max)中表达时,它们会诱导出不同的反应。PsCRN63 诱导细胞死亡,而 PsCRN115 抑制由大豆疫霉菌坏死诱导蛋白(PsojNIP)或 PsCRN63 引发的细胞死亡。具有缺失信号肽和 FLAK 基序的 CRN 片段的表达表明,PsCRN63 或 PsCRN115 的羧基末端部分足以发挥其活性。然而,对于 PsCRN63 诱导细胞死亡,而不是对于 PsCRN115 抑制细胞死亡,预测的核定位信号是必需的。此外,在大豆疫霉稳定转化体中沉默 PsCRN63 和 PsCRN115 基因会导致其在大豆上的毒力降低。有趣的是,沉默的转化体失去了抑制宿主细胞死亡和接种植物上的 callose 沉积的能力。这些结果表明 CRN 效应子在抑制宿主防御反应中发挥作用。

相似文献

1
Two host cytoplasmic effectors are required for pathogenesis of Phytophthora sojae by suppression of host defenses.
Plant Physiol. 2011 Jan;155(1):490-501. doi: 10.1104/pp.110.166470. Epub 2010 Nov 11.
2
Two cytoplasmic effectors of Phytophthora sojae regulate plant cell death via interactions with plant catalases.
Plant Physiol. 2015 Jan;167(1):164-75. doi: 10.1104/pp.114.252437. Epub 2014 Nov 25.
3
Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants.
Plant J. 2012 Dec;72(6):882-93. doi: 10.1111/j.1365-313X.2012.05079.x. Epub 2012 Oct 26.
4
A Virulence Essential CRN Effector of Phytophthora capsici Suppresses Host Defense and Induces Cell Death in Plant Nucleus.
PLoS One. 2015 May 26;10(5):e0127965. doi: 10.1371/journal.pone.0127965. eCollection 2015.
5
Phytophthora sojae effector PsCRN70 suppresses plant defenses in Nicotiana benthamiana.
PLoS One. 2014 May 23;9(5):e98114. doi: 10.1371/journal.pone.0098114. eCollection 2014.
6
The RxLR effector Avh241 from Phytophthora sojae requires plasma membrane localization to induce plant cell death.
New Phytol. 2012 Oct;196(1):247-260. doi: 10.1111/j.1469-8137.2012.04241.x. Epub 2012 Jul 23.
7
Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire.
Plant Cell. 2011 Jun;23(6):2064-86. doi: 10.1105/tpc.111.086082. Epub 2011 Jun 7.

引用本文的文献

2
Phytophthora sojae effector PsAvh113 associates with the soybean transcription factor GmDPB to inhibit catalase-mediated immunity.
Plant Biotechnol J. 2023 Jul;21(7):1393-1407. doi: 10.1111/pbi.14043. Epub 2023 Mar 27.
4
Exploring a diverse world of effector domains and amyloid signaling motifs in fungal NLR proteins.
PLoS Comput Biol. 2022 Dec 21;18(12):e1010787. doi: 10.1371/journal.pcbi.1010787. eCollection 2022 Dec.
5
Chromosome-level assembly of the genome reveals adaptation in effector gene families.
Front Microbiol. 2022 Nov 2;13:1038444. doi: 10.3389/fmicb.2022.1038444. eCollection 2022.
6
Fungal Effectoromics: A World in Constant Evolution.
Int J Mol Sci. 2022 Nov 3;23(21):13433. doi: 10.3390/ijms232113433.
9
Unraveling Plant Cell Death during Infection.
Microorganisms. 2022 May 31;10(6):1139. doi: 10.3390/microorganisms10061139.

本文引用的文献

2
Phytophthora sojae: root rot pathogen of soybean and model oomycete.
Mol Plant Pathol. 2007 Jan;8(1):1-8. doi: 10.1111/j.1364-3703.2006.00373.x.
3
Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1.
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9909-14. doi: 10.1073/pnas.0914408107. Epub 2010 May 10.
4
A secreted effector protein (SNE1) from Phytophthora infestans is a broadly acting suppressor of programmed cell death.
Plant J. 2010 May;62(3):357-66. doi: 10.1111/j.1365-313X.2010.04160.x. Epub 2010 Feb 1.
5
Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans.
Nature. 2009 Sep 17;461(7262):393-8. doi: 10.1038/nature08358. Epub 2009 Sep 9.
6
Plant immunity: a lesson from pathogenic bacterial effector proteins.
Cell Microbiol. 2009 Oct;11(10):1453-61. doi: 10.1111/j.1462-5822.2009.01359.x. Epub 2009 Jul 20.
7
The PsCZF1 gene encoding a C2H2 zinc finger protein is required for growth, development and pathogenesis in Phytophthora sojae.
Microb Pathog. 2009 Aug;47(2):78-86. doi: 10.1016/j.micpath.2009.04.013. Epub 2009 May 15.
10
Emerging concepts in effector biology of plant-associated organisms.
Mol Plant Microbe Interact. 2009 Feb;22(2):115-22. doi: 10.1094/MPMI-22-2-0115.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验