Puthiyaveetil Sujith, Allen John F
School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK.
Proc Biol Sci. 2009 Jun 22;276(1665):2133-45. doi: 10.1098/rspb.2008.1426. Epub 2009 Feb 25.
Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles-chloroplasts and mitochondria. Until recently, it was thought that two-component systems inherited from an ancestral cyanobacterial symbiont are no longer present in chloroplasts. Recent research now shows that two-component systems have survived in chloroplasts as products of both chloroplast and nuclear genes. Comparative genomic analysis of photosynthetic eukaryotes shows a lineage-specific distribution of chloroplast two-component systems. The components and the systems they comprise have homologues in extant cyanobacterial lineages, indicating their ancient cyanobacterial origin. Sequence and functional characteristics of chloroplast two-component systems point to their fundamental role in linking photosynthesis with gene expression. We propose that two-component systems provide a coupling between photosynthesis and gene expression that serves to retain genes in chloroplasts, thus providing the basis of cytoplasmic, non-Mendelian inheritance of plastid-associated characters. We discuss the role of this coupling in the chronobiology of cells and in the dialogue between nuclear and cytoplasmic genetic systems.
由传感激酶和响应调节因子组成的双组分信号转导是细菌中主要的信号传导机制。这种信号系统起源于原核生物,并通过内共生、从细菌祖先以及真核生物、细胞质、生物能量细胞器(叶绿体和线粒体)的早期进化前体进行横向基因转移,传播到了整个真核生物域。直到最近,人们还认为从祖先蓝细菌共生体遗传而来的双组分系统在叶绿体中已不复存在。现在的最新研究表明,双组分系统作为叶绿体和核基因的产物在叶绿体中留存了下来。对光合真核生物的比较基因组分析显示了叶绿体双组分系统的谱系特异性分布。其组成成分以及它们所构成的系统在现存蓝细菌谱系中有同源物,这表明它们起源于古老的蓝细菌。叶绿体双组分系统的序列和功能特征表明它们在将光合作用与基因表达联系起来方面具有重要作用。我们提出,双组分系统提供了光合作用与基因表达之间的一种耦合,这种耦合有助于将基因保留在叶绿体中,从而为质体相关性状的细胞质非孟德尔遗传提供了基础。我们讨论了这种耦合在细胞生物钟学以及核与细胞质遗传系统之间对话中的作用。