Suppr超能文献

根管冲洗的流体力学。

The fluid mechanics of root canal irrigation.

机构信息

UCL Eastman Dental Institute, University College London, 256 Grays Inn Road, London, UK.

出版信息

Physiol Meas. 2010 Dec;31(12):R49-84. doi: 10.1088/0967-3334/31/12/R01. Epub 2010 Nov 12.

Abstract

Root canal treatment is a common dental operation aimed at removing the contents of the geometrically complex canal chambers within teeth; its purpose is to remove diseased or infected tissue. The complex chamber is first enlarged and shaped by instruments to a size sufficient to deliver antibacterial fluids. These irrigants help to dissolve dying tissue, disinfect the canal walls and space and flush out debris. The effectiveness of the procedure is limited by access to the canal terminus. Endodontic research is focused on finding the instruments and clinical procedures that might improve success rates by more effectively reaching the apical anatomy. The individual factors affecting treatment outcome have not been unequivocally deciphered, partly because of the difficulty in isolating them and in making the link between simplified, general experimental models and the complex biological objects that are teeth. Explicitly considering the physical processes within the root canal can contribute to the resolution of these problems. The central problem is one of fluid motion in a confined geometry, which makes the dispersion and mixing of irrigant more difficult because of the absence of turbulence over much of the canal volume. The effects of treatments can be understood through the use of scale models, mathematical modelling and numerical computations. A particular concern in treatment is that caustic irrigant may penetrate beyond the root canal, causing chemical damage to the jawbone. In fact, a stagnation plane exists beyond the needle tip, which the irrigant cannot penetrate. The goal is therefore to shift the stagnation plane apically to be coincident with the canal terminus without extending beyond it. Needle design may solve some of the problems but the best design for irrigant penetration conflicts with that for optimal removal of the bacterial biofilm from the canal wall. Both irrigant penetration and biofilm removal may be improved through canal fluid agitation using a closely fitting instrument or by sonic or ultrasonic activation. This review highlights a way forward by understanding the physical processes involved through physical models, mathematical modelling and numerical computations.

摘要

根管治疗是一种常见的牙科手术,旨在清除牙齿内几何形状复杂的根管腔室中的内容物;其目的是去除患病或感染的组织。首先通过器械将复杂的腔室扩大并成形到足以输送抗菌液的大小。这些冲洗液有助于溶解垂死的组织、对根管壁和空间进行消毒,并冲洗出碎屑。该程序的有效性受到到达根管末端的限制。牙髓病学研究的重点是寻找器械和临床程序,通过更有效地到达根尖解剖结构,提高成功率。影响治疗效果的个体因素尚未明确破译,部分原因是难以将它们隔离以及将简化的一般实验模型与牙齿等复杂的生物物体联系起来。明确考虑根管内的物理过程有助于解决这些问题。核心问题是在受限几何形状内的流体运动,由于在根管体积的大部分区域不存在湍流,因此使冲洗剂的分散和混合更加困难。可以通过使用比例模型、数学建模和数值计算来理解治疗的效果。治疗中的一个特殊问题是腐蚀性冲洗剂可能会渗透到根管之外,对颌骨造成化学损伤。事实上,在针尖之外存在一个停滞平面,冲洗剂无法穿透。因此,目标是将停滞平面向根尖方向移动,使其与根管末端重合,而不超出它。针设计可以解决一些问题,但对于冲洗剂渗透的最佳设计与从根管壁最佳去除细菌生物膜的设计相冲突。通过使用紧密贴合的器械或通过声或超声激活来搅动根管中的流体,可以改善冲洗剂的渗透和生物膜的去除。这篇综述通过物理模型、数学建模和数值计算来理解所涉及的物理过程,为前进指明了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验