Department of Chemistry, University of Calgary, Calgary, AB, Canada.
Chem Res Toxicol. 2010 Nov 15;23(11):1815-23. doi: 10.1021/tx100260e. Epub 2010 Oct 12.
The mercury(II) complexes formed in neutral aqueous solution with glutathione (GSH, here denoted AH(3) in its triprotonated form) were studied using Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) and (199)Hg NMR spectroscopy, complemented with electrospray ionization mass spectrometric (ESI-MS) analyses. The Hg(AH)(2) complex, with the Hg-S bond distances at 2.325 ± 0.01 Å in linear S-Hg-S coordination, and the (199)Hg NMR chemical shift at -984 ppm, dominates except at high excess of glutathione. In a series of solutions with C(Hg(II)) ∼17 mM and GSH/Hg(II) mole ratios rising from 2.4 to 11.8, the gradually increasing mean Hg-S bond distance corresponds to an increasing amount of the Hg(AH)(3) complex. ESI-MS peaks appear at -m/z values of 1208 and 1230 corresponding to the Na(4)Hg(AH)(2)(A) and Na(5)Hg(AH)(A)(2) species, respectively. In another series of solutions at pH 7.0 with C(Hg(II)) ∼50 mM and GSH/Hg(II) ratios from 2.0 to 10.0, the Hg L(III)-edge EXAFS and (199)Hg NMR spectra show that at high excess of glutathione (∼0.35 M) about ∼70% of the total mercury(II) concentration is present as the Hg(AH)(3) complex, with the average Hg-S bond distance 2.42 ± 0.02 Å in trigonal HgS(3) coordination. The proportions of HgS(n) species, n = 2, 3, and 4, quantified by fitting linear combinations of model EXAFS oscillations to the experimental EXAFS data in our present and previous studies were used to obtain stability constants for the Hg(AH)(3) complex and also for the Hg(A)(4) complex that is present at high pH. For Hg(II) in low concentration at physiological conditions (pH 7.4, C(GSH) = 2.2 mM), the relative amounts of the HgS(2) species Hg(AH)(2), Hg(AH)(A), and the HgS(3) complex Hg(AH)(3) were calculated to be 95:2:3. Our results are not consistent with the formation of dimeric Hg(II)-GSH complexes proposed in a recent EXAFS study.
在中性水溶液中,与谷胱甘肽 (GSH,以其三质子化形式表示为 AH(3)) 形成的汞 (II) 配合物使用汞 L(III) 边缘扩展 X 射线吸收精细结构 (EXAFS) 和 (199)Hg NMR 光谱进行了研究,并用电喷雾电离质谱 (ESI-MS) 分析进行了补充。Hg(AH)(2) 配合物具有 2.325 ± 0.01 Å 的 Hg-S 键距离,在直线 S-Hg-S 配位中,(199)Hg NMR 化学位移为-984 ppm,除了在谷胱甘肽过量的情况下,这是主要的。在一系列 C(Hg(II)) ∼17 mM 且 GSH/Hg(II)摩尔比从 2.4 升高至 11.8 的溶液中,逐渐增加的平均 Hg-S 键距离对应于 Hg(AH)(3) 配合物的量增加。ESI-MS 峰出现在-m/z 值为 1208 和 1230 处,分别对应于 Na(4)Hg(AH)(2)(A) 和 Na(5)Hg(AH)(A)(2) 物种。在另一系列 pH 7.0 时 C(Hg(II)) ∼50 mM 且 GSH/Hg(II) 比从 2.0 升高至 10.0 的溶液中,Hg L(III)边缘 EXAFS 和 (199)Hg NMR 光谱表明,在谷胱甘肽过量(约 0.35 M)时,约 70%的总汞 (II) 浓度存在为 Hg(AH)(3) 配合物,其平均 Hg-S 键距离为 2.42 ± 0.02 Å,在三角 HgS(3)配位中。通过将模型 EXAFS 振荡的线性组合拟合到我们目前和以前的研究中的实验 EXAFS 数据,定量了 HgS(n) 物种的比例,n = 2、3 和 4,用于获得 Hg(AH)(3) 配合物的稳定性常数,以及在高 pH 值下存在的 Hg(A)(4) 配合物的稳定性常数。对于生理条件下(pH 7.4,C(GSH) = 2.2 mM)低浓度的 Hg(II),计算出 HgS(2) 物种 Hg(AH)(2)、Hg(AH)(A) 和 HgS(3) 配合物 Hg(AH)(3) 的相对量为 95:2:3。我们的结果与最近的 EXAFS 研究中提出的二聚汞 (II)-GSH 配合物的形成不一致。