Suppr超能文献

从随机的细胞间变化中鉴定:一个遗传开关案例研究。

Identification from stochastic cell-to-cell variation: a genetic switch case study.

机构信息

Los Alamos National Laboratory, Center for Nonlinear Studies and Computer, Computational and Statistical Sciences Division, Los Alamos, NM, USA.

出版信息

IET Syst Biol. 2010 Nov;4(6):356-66. doi: 10.1049/iet-syb.2010.0013.

Abstract

Owing to the inherently random and discrete nature of genes, RNAs and proteins within living cells, there can be a wide range of variability both over time in a single cell and from cell to cell in a population of genetically identical cells. Different mechanisms and reaction rates help shape this variability in different ways, and the resulting cell-to-cell variability can be quantitatively measured using techniques such as time-lapse microscopy and fluorescence activated cell sorting (or flow cytometry). It has been shown that these measurements can help to constrain the parameters and mechanisms of stochastic gene regulatory models. In this work, finite state projection approaches are used to explore the possibility of identifying the parameters of a specific stochastic model for the genetic toggle switch consisting of mutually inhibiting proteins: LacI and cI. This article explores the possibility of identifying the model parameters from different types of statistical information, such as mean expression levels, LacI protein distributions and LacI-cI multivariate distributions. It is determined that although the toggle model parameters cannot be uniquely identified from measurements that track just the LacI variability, the parameters could be identified from measurements of the cell-to-cell variability in both regulatory proteins. Based upon the simulated data and the computational investigations of this study, experiments are proposed that could enable this identification.

摘要

由于活细胞内的基因、RNA 和蛋白质本质上具有随机性和离散性,因此单个细胞内的时间变化以及遗传上相同的细胞群体中细胞间的变化范围可能会非常大。不同的机制和反应速率以不同的方式帮助塑造这种可变性,并且可以使用时间 lapse 显微镜和荧光激活细胞分选(或流式细胞术)等技术对这种细胞间的可变性进行定量测量。已经表明,这些测量可以帮助约束随机基因调控模型的参数和机制。在这项工作中,使用有限状态投影方法来探索识别由相互抑制的蛋白质:LacI 和 cI 组成的遗传 toggle 开关的特定随机模型的参数的可能性。本文探讨了从不同类型的统计信息(例如平均表达水平、LacI 蛋白分布和 LacI-cI 多元分布)识别模型参数的可能性。结果表明,尽管无法从仅跟踪 LacI 变异性的测量中唯一地识别 toggle 模型参数,但可以从两种调节蛋白的细胞间变异性的测量中识别出这些参数。基于模拟数据和本研究的计算研究,提出了可以实现这种识别的实验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验