Department of Chemical and Biological Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States.
Keck Scholars, School of Biomedical Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States.
J Phys Chem B. 2019 Mar 14;123(10):2217-2234. doi: 10.1021/acs.jpcb.8b10946. Epub 2019 Mar 5.
The finite state projection (FSP) approach to solving the chemical master equation has enabled successful inference of discrete stochastic models to predict single-cell gene regulation dynamics. Unfortunately, the FSP approach is highly computationally intensive for all but the simplest models, an issue that is highly problematic when parameter inference and uncertainty quantification takes enormous numbers of parameter evaluations. To address this issue, we propose two new computational methods for the Bayesian inference of stochastic gene expression parameters given single-cell experiments. We formulate and verify an adaptive delayed acceptance Metropolis-Hastings (ADAMH) algorithm to utilize with reduced Krylov-basis projections of the FSP. We then introduce an extension of the ADAMH into a hybrid scheme that consists of an initial phase to construct a reduced model and a faster second phase to sample from the approximate posterior distribution determined by the constructed model. We test and compare both algorithms to an adaptive Metropolis algorithm with full FSP-based likelihood evaluations on three example models and simulated data to show that the new ADAMH variants achieve substantial speedup in comparison to the full FSP approach. By reducing the computational costs of parameter estimation, we expect the ADAMH approach to enable efficient data-driven estimation for more complex gene regulation models.
有限状态投影(FSP)方法可用于解决化学主方程,成功地推断出离散随机模型,以预测单细胞基因调控动力学。不幸的是,对于除最简单模型之外的所有模型,FSP 方法的计算量都非常大,而当参数推断和不确定性量化需要进行大量参数评估时,这个问题就非常成问题。为了解决这个问题,我们提出了两种新的计算方法,用于基于单细胞实验对随机基因表达参数进行贝叶斯推断。我们提出并验证了一种自适应延迟接受 Metropolis-Hastings(ADAMH)算法,用于利用 FSP 的简化 Krylov 基投影。然后,我们将 ADAMH 扩展为一种混合方案,其中包括一个构建简化模型的初始阶段和一个更快的第二阶段,用于从由构建的模型确定的近似后验分布中采样。我们在三个示例模型和模拟数据上对这两种算法与基于全 FSP 的似然评估的自适应 Metropolis 算法进行了测试和比较,结果表明,新的 ADAMH 变体与全 FSP 方法相比,实现了显著的加速。通过降低参数估计的计算成本,我们期望 ADAMH 方法能够为更复杂的基因调控模型进行高效的数据驱动估计。