Suppr超能文献

鉴别发热而无明确病因的儿童中的严重细菌感染。

Identifying severe bacterial infection in children with fever without source.

机构信息

Division of Pediatric Emergency Medicine, Geneva University Hospitals and University of Geneva, 1211 Geneva 14, Switzerland.

出版信息

Expert Rev Anti Infect Ther. 2010 Nov;8(11):1231-7. doi: 10.1586/eri.10.118.

Abstract

For decades, many investigators have attempted to identify clinical or laboratory markers that can accurately differentiate severe bacterial from self-limiting viral infections in young children with fever without source. Unfortunately, no perfect marker has been discovered so far. Many guidelines recommend white blood cell count as a screening marker in fever without source, whereas compelling evidence in the literature emphasizes the superior characteristics of C-reactive protein and procalcitonin. One way to improve predictive value is the combination of prediction rules of different tests for clinical and laboratory markers. Several clinical decision rules, reviewed in this article, have been suggested but seem to be difficult to implement in practice due to their complexity. Recently, procalcitonin, C-reactive protein and urinary dipstick were combined in a simple risk index score that displayed promising predictive value in severe bacterial infections in children. Ultimately, impact analyses still have to be performed to show improved quality of care in this setting.

摘要

数十年来,许多研究人员一直试图寻找能够准确区分无明确病因的发热患儿中严重细菌性感染与自限性病毒感染的临床或实验室标志物。遗憾的是,到目前为止还没有发现完美的标志物。许多指南建议将白细胞计数作为无明确病因发热的筛查标志物,而文献中的有力证据则强调 C 反应蛋白和降钙素原的优势特征。提高预测价值的一种方法是结合不同检测的预测规则用于临床和实验室标志物。本文回顾了几种临床决策规则,但由于其复杂性,在实践中似乎难以实施。最近,降钙素原、C 反应蛋白和尿试纸联合应用于一个简单的风险指数评分,在儿童严重细菌感染中显示出有前景的预测价值。最终,仍需要进行影响分析,以证明在这种情况下提高了护理质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验