Laboratory for Neurobiology and Gene Therapy, Division of Molecular Medicine, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium.
J Neurochem. 2011 Jan;116(2):304-15. doi: 10.1111/j.1471-4159.2010.07105.x.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most prevalent known cause of autosomal dominant Parkinson's disease. The LRRK2 gene encodes a Roco protein featuring a Ras of complex proteins (ROC) GTPase and a kinase domain linked by the C-terminal of ROC (COR) domain. Here, we explored the effects of the Y1699C pathogenic LRRK2 mutation in the COR domain on GTPase activity and interactions within the catalytic core of LRRK2. We observed a decrease in GTPase activity for LRRK2 Y1699C comparable to the decrease observed for the R1441C pathogenic mutant and the T1348N dysfunctional mutant. To study the underlying mechanism, we explored the dimerization in the catalytic core of LRRK2. ROC-COR dimerization was significantly weakened by the Y1699C or R1441C/G mutation. Using a competition assay, we demonstrated that the intra-molecular ROC : COR interaction is favoured over ROC : ROC dimerization. Interestingly, the intra-molecular ROC : COR interaction was strengthened by the Y1699C mutation. This is supported by a 3D homology model of the ROC-COR tandem of LRRK2, showing that Y1699 is positioned at the intra-molecular ROC : COR interface. In conclusion, our data provides mechanistic insight into the mode of action of the Y1699C LRRK2 mutant: the Y1699C substitution, situated at the intra-molecular ROC : COR interface, strengthens the intra-molecular ROC : COR interaction, thereby locally weakening the dimerization of LRRK2 at the ROC-COR tandem domain resulting in decreased GTPase activity.
LRRK2 基因中的亮氨酸丰富重复激酶 2 (LRRK2) 突变是最常见的常染色体显性帕金森病的已知原因。LRRK2 基因编码一种 Roco 蛋白,具有 Ras 相关蛋白复合物 (ROC) GTPase 和由 ROC 端 (COR) 域连接的激酶结构域。在这里,我们研究了 COR 结构域中致病性 LRRK2 突变 Y1699C 对 GTPase 活性和 LRRK2 催化核心内相互作用的影响。我们观察到 LRRK2 Y1699C 的 GTPase 活性降低,与致病性 R1441C 突变体和功能失调的 T1348N 突变体观察到的降低相当。为了研究潜在的机制,我们研究了 LRRK2 催化核心中的二聚化。ROC-COR 二聚化因 Y1699C 或 R1441C/G 突变而显著减弱。通过竞争测定,我们证明了分子内 ROC: COR 相互作用优先于 ROC:ROC 二聚化。有趣的是,Y1699C 突变增强了分子内 ROC: COR 相互作用。这得到了 LRRK2 ROC-COR 串联的 3D 同源模型的支持,该模型显示 Y1699 位于分子内 ROC: COR 界面处。总之,我们的数据为 LRRK2 Y1699C 突变体的作用模式提供了机制上的见解:位于分子内 ROC: COR 界面的 Y1699C 取代,增强了分子内 ROC: COR 相互作用,从而局部削弱了 ROC-COR 串联结构域中 LRRK2 的二聚化,导致 GTPase 活性降低。