Department of Psychology, Vanderbilt University, Nashville, TN 37212, USA.
J Neurosci Methods. 2011 Jan 15;194(2):266-73. doi: 10.1016/j.jneumeth.2010.10.029. Epub 2010 Nov 11.
Gamma band synchronization has drawn increasing interest with respect to its potential role in neuronal encoding strategy and behavior in awake, behaving animals. However, contamination of these recordings by power line noise can confound the analysis and interpretation of cortical local field potential (LFP). Existing denoising methods are plagued by inadequate noise reduction, inaccuracies, and even introduction of new noise components. To carefully and more completely remove such contamination, we propose an automatic method based on the concept of adaptive noise cancellation that utilizes the correlative features of common noise sources, and implement with AutoRegressive model with eXogenous Input (ARX). We apply this technique to both simulated data and LFPs recorded in the primary visual cortex of awake macaque monkeys. The analyses here demonstrate a greater degree of accurate noise removal than conventional notch filters. Our method leaves desired signal intact and does not introduce artificial noise components. Application of this method to awake monkey V1 recordings reveals a significant power increase in the gamma range evoked by visual stimulation. Our findings suggest that the ARX denoising procedure will be an important pre-processing step in the analysis of large volumes of cortical LFP data as well as high frequency (gamma-band related) electroencephalography/magnetoencephalography (EEG/MEG) applications, one which will help to convincingly dissociate this notorious artifact from gamma-band activity.
Gamma 波段同步因其在清醒、行为动物的神经元编码策略和行为中的潜在作用而引起了越来越多的关注。然而,这些记录中的电源线噪声会干扰皮质局部场电位 (LFP) 的分析和解释。现有的去噪方法存在降噪不足、不准确甚至引入新噪声成分等问题。为了更仔细、更完全地去除这种污染,我们提出了一种基于自适应噪声消除概念的自动方法,该方法利用了常见噪声源的相关特征,并使用带外输入的自回归模型 (ARX) 实现。我们将该技术应用于模拟数据和清醒猕猴初级视觉皮层记录的 LFPs。分析表明,该技术比传统陷波滤波器具有更高的准确去噪程度。我们的方法不会破坏所需信号,也不会引入人工噪声成分。该方法应用于清醒猕猴 V1 记录,揭示了视觉刺激诱发的 gamma 频段的显著功率增加。我们的研究结果表明,ARX 去噪过程将是分析大量皮质 LFP 数据以及高频 (与 gamma 波段相关) 脑电图/脑磁图 (EEG/MEG) 应用的重要预处理步骤,这将有助于令人信服地将这种臭名昭著的伪影与 gamma 波段活动区分开来。