Suppr超能文献

绘制脑磁图和脑电图中皮质源的信噪比图谱。

Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography.

作者信息

Goldenholz Daniel M, Ahlfors Seppo P, Hämäläinen Matti S, Sharon Dahlia, Ishitobi Mamiko, Vaina Lucia M, Stufflebeam Steven M

机构信息

Athinoula A. Martinos Center For Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA.

出版信息

Hum Brain Mapp. 2009 Apr;30(4):1077-86. doi: 10.1002/hbm.20571.

Abstract

Although magnetoencephalography (MEG) and electroencephalography (EEG) have been available for decades, their relative merits are still debated. We examined regional differences in signal-to-noise-ratios (SNRs) of cortical sources in MEG and EEG. Data from four subjects were used to simulate focal and extended sources located on the cortical surface reconstructed from high-resolution magnetic resonance images. The SNR maps for MEG and EEG were found to be complementary. The SNR of deep sources was larger in EEG than in MEG, whereas the opposite was typically the case for superficial sources. Overall, the SNR maps were more uniform for EEG than for MEG. When using a noise model based on uniformly distributed random sources on the cortex, the SNR in MEG was found to be underestimated, compared with the maps obtained with noise estimated from actual recorded MEG and EEG data. With extended sources, the total area of cortex in which the SNR was higher in EEG than in MEG was larger than with focal sources. Clinically, SNR maps in a patient explained differential sensitivity of MEG and EEG in detecting epileptic activity. Our results emphasize the benefits of recording MEG and EEG simultaneously.

摘要

尽管脑磁图(MEG)和脑电图(EEG)已应用数十年,但其相对优势仍存在争议。我们研究了MEG和EEG中皮质源信噪比(SNR)的区域差异。使用来自四名受试者的数据来模拟位于从高分辨率磁共振图像重建的皮质表面上的局灶性和扩展性源。发现MEG和EEG的SNR图具有互补性。EEG中深部源的SNR大于MEG,而浅表源通常情况相反。总体而言,EEG的SNR图比MEG更均匀。当使用基于皮质上均匀分布随机源的噪声模型时,与从实际记录的MEG和EEG数据估计的噪声获得的图相比,MEG中的SNR被低估。对于扩展性源,EEG中SNR高于MEG的皮质总面积大于局灶性源。在临床上,患者的SNR图解释了MEG和EEG在检测癫痫活动中的不同敏感性。我们的结果强调了同时记录MEG和EEG的益处。

相似文献

4
EEG and MEG: sensitivity to epileptic spike activity as function of source orientation and depth.
Physiol Meas. 2016 Jul;37(7):1146-62. doi: 10.1088/0967-3334/37/7/1146. Epub 2016 Jun 21.
5
Sensitivity of MEG and EEG to source orientation.
Brain Topogr. 2010 Sep;23(3):227-32. doi: 10.1007/s10548-010-0154-x. Epub 2010 Jul 18.
6
Cancellation of EEG and MEG signals generated by extended and distributed sources.
Hum Brain Mapp. 2010 Jan;31(1):140-9. doi: 10.1002/hbm.20851.
7
8
Beamformer source analysis and connectivity on concurrent EEG and MEG data during voluntary movements.
PLoS One. 2014 Mar 11;9(3):e91441. doi: 10.1371/journal.pone.0091441. eCollection 2014.
9
Differences in MEG/EEG epileptic spike yields explained by regional differences in signal-to-noise ratios.
J Clin Neurophysiol. 2005 Apr;22(2):153-8. doi: 10.1097/01.wnp.0000158947.68733.51.
10
Time-coherent expansion of MEG/EEG cortical sources.
Neuroimage. 2002 Nov;17(3):1277-89. doi: 10.1006/nimg.2002.1269.

引用本文的文献

1
Intelligent sensing devices and systems for personalized mental health.
Med X. 2025 Dec;3(1). doi: 10.1007/s44258-025-00057-3. Epub 2025 Apr 2.
2
Word-selective EEG/MEG responses in the English language obtained with fast periodic visual stimulation (FPVS).
Imaging Neurosci (Camb). 2025 Jan 3;3. doi: 10.1162/imag_a_00414. eCollection 2025.
3
Supplementary motor area in speech initiation: A large-scale intracranial EEG evaluation of stereotyped word articulation.
iScience. 2024 Dec 4;28(1):111531. doi: 10.1016/j.isci.2024.111531. eCollection 2025 Jan 17.
5
Onset timing of letter processing in auditory and visual sensory cortices.
Front Integr Neurosci. 2024 Nov 14;18:1427149. doi: 10.3389/fnint.2024.1427149. eCollection 2024.
6
A novel, robust, and portable platform for magnetoencephalography using optically-pumped magnetometers.
Imaging Neurosci (Camb). 2024 Sep 25;2:1-22. doi: 10.1162/imag_a_00283. eCollection 2024 Sep 1.
7
Oscillatory Brain Activity in the Canonical Alpha-Band Conceals Distinct Mechanisms in Attention.
J Neurosci. 2025 Jan 1;45(1):e0918242024. doi: 10.1523/JNEUROSCI.0918-24.2024.
9
Spatiotemporal whole-brain activity and functional connectivity of melodies recognition.
Cereb Cortex. 2024 Aug 1;34(8). doi: 10.1093/cercor/bhae320.

本文引用的文献

1
The value of multichannel MEG and EEG in the presurgical evaluation of 70 epilepsy patients.
Epilepsy Res. 2006 Apr;69(1):80-6. doi: 10.1016/j.eplepsyres.2006.01.001. Epub 2006 Mar 3.
3
Differences in MEG/EEG epileptic spike yields explained by regional differences in signal-to-noise ratios.
J Clin Neurophysiol. 2005 Apr;22(2):153-8. doi: 10.1097/01.wnp.0000158947.68733.51.
5
Combined MEG/EEG analysis of the interictal spike complex in mesial temporal lobe epilepsy.
Neuroimage. 2005 Feb 1;24(3):607-14. doi: 10.1016/j.neuroimage.2004.09.031.
6
A hybrid approach to the skull stripping problem in MRI.
Neuroimage. 2004 Jul;22(3):1060-75. doi: 10.1016/j.neuroimage.2004.03.032.
9
MEG: good enough.
Clin Neurophysiol. 2004 May;115(5):995-7. doi: 10.1016/j.clinph.2003.12.012.
10
Quantitative analysis of spatial sampling error in the infant and adult electroencephalogram.
Neuroimage. 2004 Apr;21(4):1260-74. doi: 10.1016/j.neuroimage.2003.11.028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验