University of Miami, Rosenstiel School of Marine and Atmospheric Science, Division of Marine Biology and Fisheries, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.
J Exp Biol. 2010 Dec 1;213(Pt 23):4092-8. doi: 10.1242/jeb.045088.
The freshwater common pond snail Lymnaea stagnalis produces embryos that complete direct development, hatching as shell-bearing individuals within 10 days despite relatively low ambient calcium and carbonate availability. This development is impaired by removal of ambient total calcium but not by removal of bicarbonate and/or carbonate. In this study we utilized pharmacological agents to target possible acquisition pathways for both Ca(2+) and accumulation of carbonate in post-metamorphic, shell-laying embryos. Using whole egg mass flux measurements and ion-specific microelectrode analytical techniques, we have demonstrated that carbonic anhydrase-catalyzed hydration of CO(2) is central in the acquisition of both shell-forming ions because it provides the hydrogen ions for an electrogenic vacuolar-type H(+)-ATPase that fuels the uptake of Ca(2+) via voltage-dependent Ca(2+) channels and possibly an electrogenic Ca(2+)/1H(+) exchanger. Additionally, CO(2) hydration provides an endogenous source of HCO(3)(-). Thus, hydration of endogenous CO(2) forms HCO(3)(-) for calcification while hydrogen ions are excreted, contributing to continued Ca(2+) uptake, as well as creating favorable alkaline internal conditions for calcification. The connections between Ca(2+) and HCO(3)(-) acquisition mechanisms that we describe here provide new insight into this efficient, embryonic calcification in freshwater.
淡水圆田螺 Lymnaea stagnalis 产生的胚胎能够直接发育,在 10 天内孵化成带有贝壳的个体,尽管环境中的钙和碳酸盐含量相对较低。这种发育会因去除环境中的总钙而受损,但不会因去除碳酸氢盐和/或碳酸盐而受损。在这项研究中,我们利用药理学手段来针对后变态、产卵胚胎中可能的 Ca(2+)和碳酸盐积累获取途径。通过整个卵质量通量测量和离子特异性微电极分析技术,我们已经证明,碳酸酐酶催化的 CO(2)水合作用是获取壳形成离子的核心,因为它为电致空泡型 H(+)-ATP 酶提供了氢离子,该酶通过电压依赖性 Ca(2+)通道和可能的电致 Ca(2+)/1H(+)交换器为 Ca(2+)的摄取提供动力。此外,CO(2)水合作用提供了 HCO(3)(-)的内源性来源。因此,内源性 CO(2)的水合作用形成 HCO(3)(-)以进行钙化,同时排出氢离子,有助于持续的 Ca(2+)摄取,并为钙化创造有利的碱性内部条件。我们在这里描述的 Ca(2+)和 HCO(3)(-)获取机制之间的联系,为我们提供了对淡水环境中这种高效的胚胎钙化的新见解。