Suppr超能文献

characterization of mechanisms for Ca2+ and HCO3(-)/CO3(2-) acquisition for shell formation in embryos of the freshwater common pond snail Lymnaea stagnalis.

Characterization of mechanisms for Ca2+ and HCO3(-)/CO3(2-) acquisition for shell formation in embryos of the freshwater common pond snail Lymnaea stagnalis.

机构信息

University of Miami, Rosenstiel School of Marine and Atmospheric Science, Division of Marine Biology and Fisheries, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.

出版信息

J Exp Biol. 2010 Dec 1;213(Pt 23):4092-8. doi: 10.1242/jeb.045088.

Abstract

The freshwater common pond snail Lymnaea stagnalis produces embryos that complete direct development, hatching as shell-bearing individuals within 10 days despite relatively low ambient calcium and carbonate availability. This development is impaired by removal of ambient total calcium but not by removal of bicarbonate and/or carbonate. In this study we utilized pharmacological agents to target possible acquisition pathways for both Ca(2+) and accumulation of carbonate in post-metamorphic, shell-laying embryos. Using whole egg mass flux measurements and ion-specific microelectrode analytical techniques, we have demonstrated that carbonic anhydrase-catalyzed hydration of CO(2) is central in the acquisition of both shell-forming ions because it provides the hydrogen ions for an electrogenic vacuolar-type H(+)-ATPase that fuels the uptake of Ca(2+) via voltage-dependent Ca(2+) channels and possibly an electrogenic Ca(2+)/1H(+) exchanger. Additionally, CO(2) hydration provides an endogenous source of HCO(3)(-). Thus, hydration of endogenous CO(2) forms HCO(3)(-) for calcification while hydrogen ions are excreted, contributing to continued Ca(2+) uptake, as well as creating favorable alkaline internal conditions for calcification. The connections between Ca(2+) and HCO(3)(-) acquisition mechanisms that we describe here provide new insight into this efficient, embryonic calcification in freshwater.

摘要

淡水圆田螺 Lymnaea stagnalis 产生的胚胎能够直接发育,在 10 天内孵化成带有贝壳的个体,尽管环境中的钙和碳酸盐含量相对较低。这种发育会因去除环境中的总钙而受损,但不会因去除碳酸氢盐和/或碳酸盐而受损。在这项研究中,我们利用药理学手段来针对后变态、产卵胚胎中可能的 Ca(2+)和碳酸盐积累获取途径。通过整个卵质量通量测量和离子特异性微电极分析技术,我们已经证明,碳酸酐酶催化的 CO(2)水合作用是获取壳形成离子的核心,因为它为电致空泡型 H(+)-ATP 酶提供了氢离子,该酶通过电压依赖性 Ca(2+)通道和可能的电致 Ca(2+)/1H(+)交换器为 Ca(2+)的摄取提供动力。此外,CO(2)水合作用提供了 HCO(3)(-)的内源性来源。因此,内源性 CO(2)的水合作用形成 HCO(3)(-)以进行钙化,同时排出氢离子,有助于持续的 Ca(2+)摄取,并为钙化创造有利的碱性内部条件。我们在这里描述的 Ca(2+)和 HCO(3)(-)获取机制之间的联系,为我们提供了对淡水环境中这种高效的胚胎钙化的新见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验