Stephenson Nadine, Beckmann Lars, Chang-Claude Jenny
Division of Cancer Epidemiology, German Cancer Research Center DKFZ, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
Epidemiol Perspect Innov. 2010 Nov 16;7:10. doi: 10.1186/1742-5573-7-10.
Standard logistic regression with or without stepwise selection has the disadvantage of not incorporating model uncertainty and the dependency of estimates on the underlying model into the final inference. We explore the use of a Bayes Model Averaging approach as an alternative to analyze the influence of genetic variants, environmental effects and their interactions on disease.
Logistic regression with and without stepwise selection and Bayes Model Averaging were applied to a population-based case-control study exploring the association of genetic variants in tobacco smoke-related carcinogen pathways with breast cancer.
Both regression and Bayes Model Averaging highlighted a significant effect of NAT1*10 on breast cancer, while regression analysis also suggested a significant effect for packyears and for the interaction of packyears and NAT2.
Bayes Model Averaging allows incorporation of model uncertainty, helps reduce dimensionality and avoids the problem of multiple comparisons. It can be used to incorporate biological information, such as pathway data, into the analysis. As with all Bayesian analysis methods, careful consideration must be given to prior specification.
采用或不采用逐步选择法的标准逻辑回归存在不足之处,即未将模型不确定性以及估计值对基础模型的依赖性纳入最终推断。我们探索使用贝叶斯模型平均法作为一种替代方法,以分析基因变异、环境效应及其相互作用对疾病的影响。
将采用和不采用逐步选择法的逻辑回归以及贝叶斯模型平均法应用于一项基于人群的病例对照研究,该研究探讨烟草烟雾相关致癌物途径中的基因变异与乳腺癌的关联。
回归分析和贝叶斯模型平均法均突出显示NAT1*10对乳腺癌有显著影响,而回归分析还表明吸烟包年数以及吸烟包年数与NAT2的相互作用有显著影响。
贝叶斯模型平均法能够纳入模型不确定性,有助于降低维度并避免多重比较问题。它可用于将生物学信息(如通路数据)纳入分析。与所有贝叶斯分析方法一样,必须仔细考虑先验设定。