Suppr超能文献

皮层 γ 反应:上下求索。

Cortical γ responses: searching high and low.

机构信息

Department of Neurology, The Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 2-147, Baltimore, Maryland 21287, United States.

出版信息

Int J Psychophysiol. 2011 Jan;79(1):9-15. doi: 10.1016/j.ijpsycho.2010.10.013. Epub 2010 Nov 23.

Abstract

In this paper, a brief, preliminary attempt is made to frame a scientific debate about how functional responses at gamma frequencies in electrophysiological recordings (EEG, MEG, ECoG, and LFP) should be classified and interpreted. In general, are all gamma responses the same, or should they be divided into different classes according to criteria such as their spectral characteristics (frequency range and/or shape), their spatial-temporal patterns of occurrence, and/or their responsiveness under different task conditions? In particular, are the responses observed in intracranial EEG at a broad range of "high gamma" frequencies (60-200Hz) different from gamma responses observed at lower frequencies (30-80Hz), typically in narrower bands? And if they are different, how should they be interpreted? Does the broad spectral shape of high gamma responses arise from the summation of many different narrow-band oscillations, or does it reflect something completely different? If we are not sure, should we refer to high gamma activity as oscillations? A variety of theories have posited a mechanistic role for gamma activity in cortical function, often assuming narrow-band oscillations. These theories continue to influence the design of experiments and the interpretation of their results. Do these theories apply to all electrophysiological responses at gamma frequencies? Although no definitive answers to these questions are immediately anticipated, this paper will attempt to review the rationale for why they are worth asking and to point to some of the possible answers that have been proposed.

摘要

本文旨在简要探讨如何对电生理记录(EEG、MEG、ECoG 和 LFP)中γ频段的功能反应进行分类和解释,从而引发科学界的讨论。通常来说,所有的γ反应都是相同的,还是应该根据其频谱特征(频率范围和/或形状)、时空出现模式以及在不同任务条件下的反应性等标准将其分为不同类别?具体而言,在颅内 EEG 中观察到的广泛的“高γ”频率(60-200Hz)与在较低频率(30-80Hz)、通常在较窄频带中观察到的γ反应是否不同?如果不同,应该如何解释?高γ反应的宽频谱形状是由许多不同的窄带振荡的总和引起的,还是反映了完全不同的东西?如果我们不确定,是否应该将高γ活动称为振荡?许多理论都假设γ活动在皮质功能中具有机制作用,通常假设为窄带振荡。这些理论继续影响实验设计和对其结果的解释。这些理论是否适用于所有γ频段的电生理反应?尽管目前还无法立即对这些问题给出明确的答案,但本文将尝试回顾提出这些问题的原因,并指出一些已经提出的可能答案。

相似文献

1
Cortical γ responses: searching high and low.
Int J Psychophysiol. 2011 Jan;79(1):9-15. doi: 10.1016/j.ijpsycho.2010.10.013. Epub 2010 Nov 23.
2
Dominant frequencies of resting human brain activity as measured by the electrocorticogram.
Neuroimage. 2013 Oct 1;79:223-33. doi: 10.1016/j.neuroimage.2013.04.044. Epub 2013 Apr 30.
3
High-frequency gamma oscillations and human brain mapping with electrocorticography.
Prog Brain Res. 2006;159:275-95. doi: 10.1016/S0079-6123(06)59019-3.
4
Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study.
Neuroimage. 2021 Jan 1;224:117452. doi: 10.1016/j.neuroimage.2020.117452. Epub 2020 Oct 13.
5
High frequency oscillations are associated with cognitive processing in human recognition memory.
Brain. 2014 Aug;137(Pt 8):2231-44. doi: 10.1093/brain/awu149. Epub 2014 Jun 11.
6
High gamma cortical processing of continuous speech in younger and older listeners.
Neuroimage. 2020 Nov 15;222:117291. doi: 10.1016/j.neuroimage.2020.117291. Epub 2020 Aug 21.
8
Intrinsic frequency biases and profiles across human cortex.
J Neurophysiol. 2017 Nov 1;118(5):2853-2864. doi: 10.1152/jn.00061.2017. Epub 2017 Aug 23.
9
Nonlinear interaction decomposition (NID): A method for separation of cross-frequency coupled sources in human brain.
Neuroimage. 2020 May 1;211:116599. doi: 10.1016/j.neuroimage.2020.116599. Epub 2020 Feb 5.

引用本文的文献

1
2
Neural encoding of melodic expectations in music across EEG frequency bands.
Eur J Neurosci. 2024 Dec;60(11):6734-6749. doi: 10.1111/ejn.16581. Epub 2024 Oct 29.
5
Auditory and Visual Gratings Elicit Distinct Gamma Responses.
eNeuro. 2024 Apr 25;11(4). doi: 10.1523/ENEURO.0116-24.2024. Print 2024 Apr.
6
Interaction of acetylcholine and oxytocin neuromodulation in the hippocampus.
Neuron. 2024 Jun 5;112(11):1862-1875.e5. doi: 10.1016/j.neuron.2024.02.021. Epub 2024 Mar 26.
7
Reducing Stress with Yoga: A Systematic Review Based on Multimodal Biosignals.
Int J Yoga. 2023 Sep-Dec;16(3):156-170. doi: 10.4103/ijoy.ijoy_218_23. Epub 2024 Feb 9.
8
Electrocorticographic Activation Patterns of Electroencephalographic Microstates.
Brain Topogr. 2024 Mar;37(2):287-295. doi: 10.1007/s10548-023-00952-1. Epub 2023 Mar 20.
9
The dynamics of cortical interactions in visual recognition of object category: living versus nonliving.
Cereb Cortex. 2023 Apr 25;33(9):5740-5750. doi: 10.1093/cercor/bhac456.
10
The effect of ketamine and D-cycloserine on the high frequency resting EEG spectrum in humans.
Psychopharmacology (Berl). 2023 Jan;240(1):59-75. doi: 10.1007/s00213-022-06272-9. Epub 2022 Nov 19.

本文引用的文献

1
Can Electrocorticography (ECoG) Support Robust and Powerful Brain-Computer Interfaces?
Front Neuroeng. 2010 Jun 24;3:9. doi: 10.3389/fneng.2010.00009. eCollection 2010.
2
Cortical spatio-temporal dynamics underlying phonological target detection in humans.
J Cogn Neurosci. 2011 Jun;23(6):1437-46. doi: 10.1162/jocn.2010.21466. Epub 2010 May 13.
3
Broadband spectral change: evidence for a macroscale correlate of population firing rate?
J Neurosci. 2010 May 12;30(19):6477-9. doi: 10.1523/JNEUROSCI.6401-09.2010.
4
Direct brain recordings fuel advances in cognitive electrophysiology.
Trends Cogn Sci. 2010 Apr;14(4):162-71. doi: 10.1016/j.tics.2010.01.005. Epub 2010 Feb 25.
5
The Berger rhythm: potential changes from the occipital lobes in man.
Brain. 2010 Jan;133(Pt 1):3-6. doi: 10.1093/brain/awp324.
6
Spatiotemporal imaging of cortical activation during verb generation and picture naming.
Neuroimage. 2010 Mar;50(1):291-301. doi: 10.1016/j.neuroimage.2009.12.035. Epub 2009 Dec 21.
7
Power-law scaling in the brain surface electric potential.
PLoS Comput Biol. 2009 Dec;5(12):e1000609. doi: 10.1371/journal.pcbi.1000609. Epub 2009 Dec 18.
8
Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans.
J Neurosci. 2009 Oct 28;29(43):13613-20. doi: 10.1523/JNEUROSCI.2041-09.2009.
9
Spike-timing-dependent plasticity leads to gamma band responses in a neural network.
Biol Cybern. 2009 Sep;101(3):227-40. doi: 10.1007/s00422-009-0332-7. Epub 2009 Sep 30.
10
High gamma mapping using EEG.
Neuroimage. 2010 Jan 1;49(1):930-8. doi: 10.1016/j.neuroimage.2009.08.041. Epub 2009 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验