Suppr超能文献

用于研究C4和单子叶C4植物叶片胞间连丝形成的新型资源。

Novel resources to investigate leaf plasmodesmata formation in C and C monocots.

作者信息

Tsang Hong Ting, Ganguly Diep R, Furbank Robert T, von Caemmerer Susanne, Danila Florence R

机构信息

Australian Research Council Centre of Excellence for Translational Photosynthesis, Plant Sciences Division, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.

CSIRO Synthetic Biology Future Science Platform, Canberra, Australian Capital Territory, 2601, Australia.

出版信息

Plant J. 2024 Dec;120(5):2207-2225. doi: 10.1111/tpj.17113. Epub 2024 Nov 4.

Abstract

Plasmodesmata (PD) are nanochannels that facilitate cell-to-cell transport in plants. More productive and photosynthetically efficient C plants form more PD at the mesophyll (M)-bundle sheath (BS) interface in their leaves than their less efficient C relatives. In C leaves, PD play an essential role in facilitating the rapid metabolite exchange between the M and BS cells to operate a biochemical CO concentrating mechanism, which increases the CO partial pressure at the site of Rubisco in the BS cells and hence photosynthetic efficiency. The genetic mechanism controlling PD formation in C and C leaves is largely unknown, especially in monocot crops, due to the technical challenge of quantifying these nanostructures with electron microscopy. To address this issue, we have generated stably transformed lines of Oryza sativa (rice, C) and Setaria viridis (setaria, C) with fluorescent protein-tagged PD to build the first spatiotemporal atlas of leaf pit field (cluster of PD) density in monocots without the need for electron microscopy. Across leaf development, setaria had consistently more PD connections at the M-BS wall interface than rice while the difference in M-M pit field density varied. While light was a critical trigger of PD formation, cell type and function determined leaf pit field density. Complementary temporal mRNA sequencing and gene co-expression network analysis revealed that the pattern of pit field density correlated with differentially expressed PD-associated genes and photosynthesis-related genes. PD-associated genes identified from our co-expression network analysis are related to cell wall expansion, translation and chloroplast signalling.

摘要

胞间连丝(PD)是促进植物细胞间运输的纳米通道。与光合效率较低的C类植物相比,生产力更高且光合效率更高的C类植物在其叶片的叶肉(M)-维管束鞘(BS)界面形成更多的胞间连丝。在C类植物的叶片中,胞间连丝在促进M细胞和BS细胞之间快速的代谢物交换以运行生化CO浓缩机制方面起着至关重要的作用,这会增加BS细胞中Rubisco位点的CO分压,从而提高光合效率。由于用电子显微镜对这些纳米结构进行量化存在技术挑战,控制C类和C类植物叶片中胞间连丝形成的遗传机制在很大程度上尚不清楚,尤其是在单子叶作物中。为了解决这个问题,我们已经构建了稳定转化的水稻(C类植物)和绿色狗尾草(C类植物)品系,其胞间连丝带有荧光蛋白标签,无需电子显微镜即可构建单子叶植物叶小孔场(胞间连丝簇)密度的首个时空图谱。在叶片发育过程中,绿色狗尾草在M-BS壁界面处始终比水稻具有更多的胞间连丝连接,而M-M小孔场密度的差异则有所不同。虽然光照是胞间连丝形成的关键触发因素,但细胞类型和功能决定了叶小孔场密度。互补的时间mRNA测序和基因共表达网络分析表明,小孔场密度模式与差异表达的胞间连丝相关基因和光合作用相关基因相关。从我们的共表达网络分析中鉴定出的胞间连丝相关基因与细胞壁扩张、翻译和叶绿体信号传导有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be6f/11629748/b6e5b1b5cecd/TPJ-120-2207-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验