Suppr超能文献

基因组分析比较乘法风险模型和加法风险模型的判别准确性。

Discriminative accuracy of genomic profiling comparing multiplicative and additive risk models.

机构信息

Office of Minority Health and Health Disparities, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA.

出版信息

Eur J Hum Genet. 2011 Feb;19(2):180-5. doi: 10.1038/ejhg.2010.165. Epub 2010 Nov 17.

Abstract

Genetic prediction of common diseases is based on testing multiple genetic variants with weak effect sizes. Standard logistic regression and Cox Proportional Hazard models that assess the combined effect of multiple variants on disease risk assume multiplicative joint effects of the variants, but this assumption may not be correct. The risk model chosen may affect the predictive accuracy of genomic profiling. We investigated the discriminative accuracy of genomic profiling by comparing additive and multiplicative risk models. We examined genomic profiles of 40 variants with genotype frequencies varying from 0.1 to 0.4 and relative risks varying from 1.1 to 1.5 in separate scenarios assuming a disease risk of 10%. The discriminative accuracy was evaluated by the area under the receiver operating characteristic curve. Predicted risks were more extreme at the lower and higher risks for the multiplicative risk model compared with the additive model. The discriminative accuracy was consistently higher for multiplicative risk models than for additive risk models. The differences in discriminative accuracy were negligible when the effect sizes were small (<1.2), but were substantial when risk genotypes were common or when they had stronger effects. Unraveling the exact mode of biological interaction is important when effect sizes of genetic variants are moderate at the least, to prevent the incorrect estimation of risks.

摘要

常见疾病的遗传预测基于测试具有弱效应大小的多个遗传变异。评估多个变体对疾病风险的综合影响的标准逻辑回归和 Cox 比例风险模型假设变体的联合效应是相乘的,但这种假设可能不正确。所选择的风险模型可能会影响基因组分析的预测准确性。我们通过比较加性和乘法风险模型来研究基因组分析的判别准确性。我们在假设疾病风险为 10%的情况下,在不同的场景中分别检查了基因型频率从 0.1 到 0.4 变化且相对风险从 1.1 到 1.5 的 40 个变体的基因组特征。通过接收者操作特性曲线下的面积来评估判别准确性。与加性模型相比,乘法风险模型的预测风险在较低和较高风险下更为极端。乘法风险模型的判别准确性始终高于加性风险模型。当效应大小较小时(<1.2),差异可忽略不计,但当风险基因型常见或效应较大时,差异则较大。当遗传变异的效应大小至少中等时,揭示确切的生物学相互作用模式很重要,以防止风险的错误估计。

相似文献

1
Discriminative accuracy of genomic profiling comparing multiplicative and additive risk models.
Eur J Hum Genet. 2011 Feb;19(2):180-5. doi: 10.1038/ejhg.2010.165. Epub 2010 Nov 17.
2
Evaluation of the discriminative accuracy of genomic profiling in the prediction of common complex diseases.
Eur J Hum Genet. 2010 Apr;18(4):485-9. doi: 10.1038/ejhg.2009.209. Epub 2009 Nov 25.
5
Using lifetime risk estimates in personal genomic profiles: estimation of uncertainty.
Am J Hum Genet. 2009 Dec;85(6):786-800. doi: 10.1016/j.ajhg.2009.10.017.
6
Strategies for developing prediction models from genome-wide association studies.
Genet Epidemiol. 2013 Dec;37(8):768-77. doi: 10.1002/gepi.21762. Epub 2013 Oct 25.
7
Predictive testing for complex diseases using multiple genes: fact or fiction?
Genet Med. 2006 Jul;8(7):395-400. doi: 10.1097/01.gim.0000229689.18263.f4.
9
An ensemble-based likelihood ratio approach for family-based genomic risk prediction.
J Zhejiang Univ Sci B. 2018;19(12):935-947. doi: 10.1631/jzus.B1800162.
10
Value of genetic profiling for the prediction of coronary heart disease.
Am Heart J. 2009 Jul;158(1):105-10. doi: 10.1016/j.ahj.2009.04.022.

引用本文的文献

1
Validity of polygenic risk scores: are we measuring what we think we are?
Hum Mol Genet. 2019 Nov 21;28(R2):R143-R150. doi: 10.1093/hmg/ddz205.
2
Direct to consumer testing in reproductive contexts--should health professionals be concerned?
Life Sci Soc Policy. 2015;11:4. doi: 10.1186/s40504-014-0018-3. Epub 2015 Apr 29.
4
Testing calibration of risk models at extremes of disease risk.
Biostatistics. 2015 Jan;16(1):143-54. doi: 10.1093/biostatistics/kxu034. Epub 2014 Jul 14.
6
Variations in predicted risks in personal genome testing for common complex diseases.
Genet Med. 2014 Jan;16(1):85-91. doi: 10.1038/gim.2013.80. Epub 2013 Jun 27.
7
The benefits of using genetic information to design prevention trials.
Am J Hum Genet. 2013 Apr 4;92(4):547-57. doi: 10.1016/j.ajhg.2013.03.003. Epub 2013 Mar 28.
8
Risk prediction for complex diseases: application to Parkinson disease.
Genet Med. 2013 May;15(5):361-7. doi: 10.1038/gim.2012.109. Epub 2012 Dec 6.

本文引用的文献

1
Cumulative association of five genetic variants with prostate cancer.
N Engl J Med. 2008 Feb 28;358(9):910-9. doi: 10.1056/NEJMoa075819. Epub 2008 Jan 16.
2
Impact of common type 2 diabetes risk polymorphisms in the DESIR prospective study.
Diabetes. 2008 Jan;57(1):244-54. doi: 10.2337/db07-0615. Epub 2007 Oct 31.
3
Prediction of individual genetic risk to disease from genome-wide association studies.
Genome Res. 2007 Oct;17(10):1520-8. doi: 10.1101/gr.6665407. Epub 2007 Sep 4.
4
Combining information from common type 2 diabetes risk polymorphisms improves disease prediction.
PLoS Med. 2006 Oct;3(10):e374. doi: 10.1371/journal.pmed.0030374.
5
Inflammatory gene polymorphisms and risk of postoperative myocardial infarction after cardiac surgery.
Circulation. 2006 Jul 4;114(1 Suppl):I275-81. doi: 10.1161/CIRCULATIONAHA.105.001032.
6
The efficacy of combining several risk factors as a screening test.
J Med Screen. 2005;12(4):197-201. doi: 10.1258/096914105775220642.
7
A refinement to 'how many genes underlie the occurrence of common complex diseases in the population?'.
Int J Epidemiol. 2006 Apr;35(2):497; author reply 498. doi: 10.1093/ije/dyi288. Epub 2005 Dec 14.
8
Graphical presentation of distributions of risk in screening.
J Med Screen. 2005;12(3):155-60. doi: 10.1258/0969141054855283.
9
Additive and multiplicative models for the joint effect of two risk factors.
Biostatistics. 2005 Jan;6(1):1-9. doi: 10.1093/biostatistics/kxh024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验