Suppr超能文献

自然语言处理在临床注册中的应用:一项关于导管内乳头状黏液性肿瘤的验证研究。

Natural language processing for the development of a clinical registry: a validation study in intraductal papillary mucinous neoplasms.

机构信息

Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.

出版信息

HPB (Oxford). 2010 Dec;12(10):688-95. doi: 10.1111/j.1477-2574.2010.00235.x.

Abstract

BACKGROUND

Medical natural language processing (NLP) systems have been developed to identify, extract and encode information within clinical narrative text. However, the role of NLP in clinical research and patient care remains limited. Pancreatic cysts are common. Some pancreatic cysts, such as intraductal papillary mucinous neoplasms (IPMNs), have malignant potential and require extended periods of surveillance. We seek to develop a novel NLP system that could be applied in our clinical network to develop a functional registry of IPMN patients.

OBJECTIVES

This study aims to validate the accuracy of our novel NLP system in the identification of surgical patients with pathologically confirmed IPMN in comparison with our pre-existing manually created surgical database (standard reference).

METHODS

The Regenstrief EXtraction Tool (REX) was used to extract pancreatic cyst patient data from medical text files from Indiana University Health. The system was assessed periodically by direct sampling and review of medical records. Results were compared with the standard reference.

RESULTS

Natural language processing detected 5694 unique patients with pancreas cysts, in 215 of whom surgical pathology had confirmed IPMN. The NLP software identified all but seven patients present in the surgical database and identified an additional 37 IPMN patients not previously included in the surgical database. Using the standard reference, the sensitivity of the NLP program was 97.5% (95% confidence interval [CI] 94.8-98.9%) and its positive predictive value was 95.5% (95% CI 92.3-97.5%).

CONCLUSIONS

Natural language processing is a reliable and accurate method for identifying selected patient cohorts and may facilitate the identification and follow-up of patients with IPMN.

摘要

背景

医学自然语言处理 (NLP) 系统已被开发用于识别、提取和编码临床叙述文本中的信息。然而,NLP 在临床研究和患者护理中的作用仍然有限。胰腺囊肿很常见。一些胰腺囊肿,如导管内乳头状黏液性肿瘤 (IPMN),具有恶性潜能,需要进行长时间的监测。我们试图开发一种新的 NLP 系统,可以在我们的临床网络中应用,为 IPMN 患者建立一个功能性登记处。

目的

本研究旨在验证我们的新型 NLP 系统在识别经病理证实的 IPMN 手术患者方面的准确性,与我们现有的手动创建的手术数据库(标准参考)进行比较。

方法

使用 Regenstrief EXtraction Tool (REX) 从印第安纳大学健康分校的医学文本文件中提取胰腺囊肿患者数据。该系统通过直接抽样和审查病历定期进行评估。结果与标准参考进行比较。

结果

自然语言处理检测到 5694 名患有胰腺囊肿的独特患者,其中 215 名患者的手术病理证实为 IPMN。NLP 软件识别了除了在手术数据库中的七名患者之外的所有患者,并识别了另外 37 名以前未包含在手术数据库中的 IPMN 患者。使用标准参考,NLP 程序的灵敏度为 97.5%(95%置信区间 [CI] 94.8-98.9%),阳性预测值为 95.5%(95% CI 92.3-97.5%)。

结论

自然语言处理是一种可靠且准确的方法,可用于识别选定的患者队列,并可能有助于识别和随访 IPMN 患者。

相似文献

2
Cystic lesions and intraductal neoplasms of the pancreas.
Best Pract Res Clin Gastroenterol. 2009;23(1):35-48. doi: 10.1016/j.bpg.2008.11.011.
3
Synchronous pancreatic solid pseudopapillary neoplasm and intraductal papillary mucinous neoplasm.
World J Gastroenterol. 2013 Jun 7;19(21):3358-63. doi: 10.3748/wjg.v19.i21.3358.
6
Progression of Pancreatic Branch Duct Intraductal Papillary Mucinous Neoplasm Associates With Cyst Size.
Gastroenterology. 2018 Feb;154(3):576-584. doi: 10.1053/j.gastro.2017.10.013. Epub 2017 Oct 23.
8
Long-term Risk of Pancreatic Malignancy in Patients With Branch Duct Intraductal Papillary Mucinous Neoplasm in a Referral Center.
Gastroenterology. 2017 Nov;153(5):1284-1294.e1. doi: 10.1053/j.gastro.2017.07.019. Epub 2017 Jul 21.
9
Cross Validation of the Monoclonal Antibody Das-1 in Identification of High-Risk Mucinous Pancreatic Cystic Lesions.
Gastroenterology. 2019 Sep;157(3):720-730.e2. doi: 10.1053/j.gastro.2019.05.014. Epub 2019 Jun 5.

引用本文的文献

1
Applications of natural language processing tools in the surgical journey.
Front Surg. 2024 May 17;11:1403540. doi: 10.3389/fsurg.2024.1403540. eCollection 2024.
2
A case study in applying artificial intelligence-based named entity recognition to develop an automated ophthalmic disease registry.
Graefes Arch Clin Exp Ophthalmol. 2023 Nov;261(11):3335-3344. doi: 10.1007/s00417-023-06190-2. Epub 2023 Aug 3.
4
Artificial intelligence in gastroenterology: A state-of-the-art review.
World J Gastroenterol. 2021 Oct 28;27(40):6794-6824. doi: 10.3748/wjg.v27.i40.6794.
6
Comparison and interpretability of machine learning models to predict severity of chest injury.
JAMIA Open. 2021 Mar 1;4(1):ooab015. doi: 10.1093/jamiaopen/ooab015. eCollection 2021 Jan.
8
Evolving Role and Future Directions of Natural Language Processing in Gastroenterology.
Dig Dis Sci. 2021 Jan;66(1):29-40. doi: 10.1007/s10620-020-06156-y. Epub 2020 Feb 27.
10
Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review.
JMIR Med Inform. 2019 Apr 27;7(2):e12239. doi: 10.2196/12239.

本文引用的文献

1
Using clinical databases to evaluate healthcare interventions.
Int J Technol Assess Health Care. 2010 Jan;26(1):86-94. doi: 10.1017/S0266462309990572.
2
The inaccuracy of ICD-9-CM Code 530.2 for identifying patients with Barrett's esophagus.
Dis Esophagus. 2008;21(5):452-6. doi: 10.1111/j.1442-2050.2007.00800.x.
5
Intraductal papillary mucinous neoplasm--when to resect?
Adv Surg. 2008;42:87-108. doi: 10.1016/j.yasu.2008.03.011.
6
Prevalence of unsuspected pancreatic cysts on MDCT.
AJR Am J Roentgenol. 2008 Sep;191(3):802-7. doi: 10.2214/AJR.07.3340.
10
Automated detection of adverse events using natural language processing of discharge summaries.
J Am Med Inform Assoc. 2005 Jul-Aug;12(4):448-57. doi: 10.1197/jamia.M1794. Epub 2005 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验