Suppr超能文献

应用基于人工智能的命名实体识别技术开发自动化眼科疾病登记系统的案例研究。

A case study in applying artificial intelligence-based named entity recognition to develop an automated ophthalmic disease registry.

作者信息

Macri Carmelo Z, Teoh Sheng Chieh, Bacchi Stephen, Tan Ian, Casson Robert, Sun Michelle T, Selva Dinesh, Chan WengOnn

机构信息

Discipline of Ophthalmology and Visual Sciences, The University of Adelaide, Adelaide, South Australia, Australia.

Department of Ophthalmology, The Royal Adelaide Hospital, Adelaide, South Australia, Australia.

出版信息

Graefes Arch Clin Exp Ophthalmol. 2023 Nov;261(11):3335-3344. doi: 10.1007/s00417-023-06190-2. Epub 2023 Aug 3.

Abstract

PURPOSE

Advances in artificial intelligence (AI)-based named entity extraction (NER) have improved the ability to extract diagnostic entities from unstructured, narrative, free-text data in electronic health records. However, there is a lack of ready-to-use tools and workflows to encourage the use among clinicians who often lack experience and training in AI. We sought to demonstrate a case study for developing an automated registry of ophthalmic diseases accompanied by a ready-to-use low-code tool for clinicians.

METHODS

We extracted deidentified electronic clinical records from a single centre's adult outpatient ophthalmology clinic from November 2019 to May 2022. We used a low-code annotation software tool (Prodigy) to annotate diagnoses and train a bespoke spaCy NER model to extract diagnoses and create an ophthalmic disease registry.

RESULTS

A total of 123,194 diagnostic entities were extracted from 33,455 clinical records. After decapitalisation and removal of non-alphanumeric characters, there were 5070 distinct extracted diagnostic entities. The NER model achieved a precision of 0.8157, recall of 0.8099, and F score of 0.8128.

CONCLUSION

We presented a case study using low-code artificial intelligence-based NLP tools to produce an automated ophthalmic disease registry. The workflow created a NER model with a moderate overall ability to extract diagnoses from free-text electronic clinical records. We have produced a ready-to-use tool for clinicians to implement this low-code workflow in their institutions and encourage the uptake of artificial intelligence methods for case finding in electronic health records.

摘要

目的

基于人工智能(AI)的命名实体提取(NER)技术的进步,提高了从电子健康记录中的非结构化、叙述性自由文本数据中提取诊断实体的能力。然而,缺乏现成的工具和工作流程来鼓励缺乏AI经验和培训的临床医生使用。我们试图展示一个开发眼科疾病自动登记册的案例研究,并为临床医生提供一个现成的低代码工具。

方法

我们从一个单一中心的成人门诊眼科诊所提取了2019年11月至2022年5月的去识别化电子临床记录。我们使用一个低代码注释软件工具(Prodigy)来注释诊断,并训练一个定制的spaCy NER模型来提取诊断并创建一个眼科疾病登记册。

结果

从33455份临床记录中总共提取了123194个诊断实体。在将首字母大写转换为小写并去除非字母数字字符后,有5070个不同的提取诊断实体。NER模型的精确率为0.8157,召回率为0.8099,F值为0.8128。

结论

我们展示了一个使用基于低代码人工智能的自然语言处理工具来生成自动眼科疾病登记册的案例研究。该工作流程创建了一个NER模型,其从自由文本电子临床记录中提取诊断的整体能力适中。我们为临床医生制作了一个现成的工具,以便他们在自己的机构中实施这个低代码工作流程,并鼓励在电子健康记录中采用人工智能方法进行病例发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16e4/10587337/964f8e016d39/417_2023_6190_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验