Department of Physiology, Mayo Clinic, Rochester, Minnesota 55905, USA.
Am J Physiol Cell Physiol. 2011 Feb;300(2):C318-27. doi: 10.1152/ajpcell.00172.2010. Epub 2010 Nov 17.
Unilateral denervation (DNV) of rat diaphragm muscle increases protein synthesis at 3 days after DNV (DNV-3D) and degradation at DNV-5D, such that net protein breakdown is evident by DNV-5D. On the basis of existing models of protein balance, we examined DNV-induced changes in Akt, AMP-activated protein kinase (AMPK), and ERK½ activation, which can lead to increased protein synthesis via mammalian target of rapamycin (mTOR)/p70S6 kinase (p70S6K), glycogen synthase kinase-3β (GSK3β), or eukaryotic initiation factor 4E (eIF4E), and increased protein degradation via forkhead box protein O (FoxO). Protein phosphorylation was measured using Western analyses through DNV-5D. Akt phosphorylation decreased at 1 h and 6 h after DNV compared with sham despite decreased AMPK phosphorylation. Both Akt and AMPK phosphorylation returned to sham levels by DNV-1D. Phosphorylation of their downstream effector mTOR (Ser2481) did not change at any time point after DNV, and phosphorylated p70S6K and eIF4E-binding protein 1 (4EBP1) increased only by DNV-5D. In contrast, ERK½ phosphorylation and its downstream effector eIF4E increased 1.7-fold at DNV-1D and phosphorylated GSK3β increased 1.5-fold at DNV-3D (P < 0.05 for both comparisons). Thus, following DNV there are differential effects on protein synthetic pathways with preferential activation of GSK3β and eIF4E over p70S6K. FoxO1 nuclear translocation occurred by DNV-1D, consistent with its role in increasing expression of atrogenes necessary for subsequent ubiquitin-proteasome activation evident by DNV-5D. On the basis of our results, increased protein synthesis following DNV is associated with changes in ERK½-dependent pathways, but protein degradation results from downregulation of Akt and nuclear translocation of FoxO1. No single trigger is responsible for protein balance following DNV. Protein balance in skeletal muscle depends on multiple synthetic/degradation pathways that should be studied in concert.
单侧膈神经切断术(DNV)可使大鼠膈肌肌肉在 DNV 后 3 天(DNV-3D)增加蛋白质合成,并在 DNV-5D 时增加蛋白质降解,从而在 DNV-5D 时明显出现净蛋白分解。基于现有的蛋白质平衡模型,我们研究了 DNV 诱导的 Akt、AMP 激活的蛋白激酶(AMPK)和 ERK½激活的变化,这些变化可通过哺乳动物雷帕霉素靶蛋白(mTOR)/p70S6 激酶(p70S6K)、糖原合酶激酶-3β(GSK3β)或真核起始因子 4E(eIF4E)增加蛋白质合成,并通过叉头框蛋白 O(FoxO)增加蛋白质降解。通过 DNV-5D 用 Western 分析测量蛋白质磷酸化。尽管 AMPK 磷酸化降低,但与假手术相比,DNV 后 1 小时和 6 小时 Akt 磷酸化降低。DNV-1D 时,Akt 和 AMPK 磷酸化均恢复至假手术水平。DNV 后任何时间点 mTOR(Ser2481)的下游效应物磷酸化均未改变,磷酸化的 p70S6K 和 eIF4E 结合蛋白 1(4EBP1)仅在 DNV-5D 时增加。相比之下,DNV-1D 时 ERK½磷酸化及其下游效应物 eIF4E 增加 1.7 倍,DNV-3D 时磷酸化 GSK3β 增加 1.5 倍(两者均为 P<0.05)。因此,DNV 后对蛋白质合成途径有不同的影响,优先激活 GSK3β 和 eIF4E 而不是 p70S6K。DNV-1D 时发生 FoxO1 核易位,与其在随后 DNV-5D 时激活必需的自噬基因以增加泛素蛋白酶体激活中的作用一致。根据我们的结果,DNV 后蛋白质合成的增加与 ERK½依赖性途径的变化有关,但蛋白质降解是由于 Akt 下调和 FoxO1 核易位引起的。没有单一的触发因素负责 DNV 后的蛋白质平衡。骨骼肌中的蛋白质平衡取决于多个合成/降解途径,这些途径应协同研究。