Suppr超能文献

Convergence of backward-error-propagation learning in photorefractive crystals.

作者信息

Petrisor G C, Goldstein A A, Jenkins B K, Herbulock E J, Tanguay A R

出版信息

Appl Opt. 1996 Mar 10;35(8):1328-43. doi: 10.1364/AO.35.001328.

Abstract

We analytically determine that the backward-error-propagation learning algorithm has a well-defined region of convergence in neural learning-parameter space for two classes of photorefractive-based optical neural-network architectures. The first class uses electric-field amplitude encoding of signals and weights in a fully coherent system, whereas the second class uses intensity encoding of signals and weights in an incoherent/coherent system. Under typical assumptions on the grating formation in photorefractive materials used in adaptive optical interconnections, we compute weight updates for both classes of architectures. Using these weight updates, we derive a set of conditions that are sufficient for such a network to operate within the region of convergence. The results are verified empirically by simulations of the xor sample problem. The computed weight updates for both classes of architectures contain two neural learning parameters: a learning-rate coefficient and a weight-decay coefficient. We show that these learning parameters are directly related to two important design parameters: system gain and exposure energy. The system gain determines the ratio of the learning-rate parameter to decay-rate parameter, and the exposure energy determines the size of the decay-rate parameter. We conclude that convergence is guaranteed (assuming no spurious local minima in the error function) by using a sufficiently high gain and a sufficiently low exposure energy per weight update.

摘要

相似文献

1
Convergence of backward-error-propagation learning in photorefractive crystals.
Appl Opt. 1996 Mar 10;35(8):1328-43. doi: 10.1364/AO.35.001328.
2
Local learning algorithm for optical neural networks.光学神经网络的局部学习算法
Appl Opt. 1992 Jun 10;31(17):3285-8. doi: 10.1364/AO.31.003285.
3
Multilayer optical learning networks.
Appl Opt. 1987 Dec 1;26(23):5061-76. doi: 10.1364/AO.26.005061.
6
Stability analysis of a three-term backpropagation algorithm.一种三项反向传播算法的稳定性分析
Neural Netw. 2005 Dec;18(10):1341-7. doi: 10.1016/j.neunet.2005.04.007. Epub 2005 Aug 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验