John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
PLoS One. 2010 Nov 11;5(11):e13933. doi: 10.1371/journal.pone.0013933.
Rhizobium leguminosarum bv. viciae mutants unable to transport branched-chain amino acids via the two main amino acid ABC transport complexes AapJQMP and BraDEFGC produce a nitrogen starvation phenotype when inoculated on pea (Pisum sativum) plants [1], [2]. Bacteroids in indeterminate pea nodules have reduced abundance and a lower chromosome number. They reduce transcription of pathways for branched-chain amino acid biosynthesis and become dependent on their provision by the host. This has been called "symbiotic auxotrophy".
METHODOLOGY/PRINCIPAL FINDINGS: A region important in solute specificity was identified in AapQ and changing P144D in this region reduced branched-chain amino acid transport to a very low rate. Strains carrying P144D were still fully effective for N(2) fixation on peas demonstrating that a low rate of branched amino acid transport in R. leguminosarum bv. viciae supports wild-type rates of nitrogen fixation. The importance of branched-chain amino acid transport was then examined in other legume-Rhizobium symbioses. An aap bra mutant of R. leguminosarum bv. phaseoli also showed nitrogen starvation symptoms when inoculated on French bean (Phaseolus vulgaris), a plant producing determinate nodules. The phenotype is different from that observed on pea and is accompanied by reduced nodule numbers and nitrogen fixation per nodule. However, an aap bra double mutant of Sinorhizobium meliloti 2011 showed no phenotype on alfalfa (Medicago sativa).
CONCLUSIONS/SIGNIFICANCE: Symbiotic auxotrophy occurs in both determinate pea and indeterminate bean nodules demonstrating its importance for bacteroid formation and nodule function in legumes with different developmental programmes. However, only small quantities of branched chain amino acids are needed and symbiotic auxotrophy did not occur in the Sinorhizobium meliloti-alfalfa symbiosis under the conditions measured. The contrasting symbiotic phenotypes of aap bra mutants inoculated on different legumes probably reflects altered timing of amino acid availability, development of symbiotic auxotrophy and nodule developmental programmes.
无法通过两个主要氨基酸 ABC 转运复合物 AapJQMP 和 BraDEFGC 运输支链氨基酸的根瘤菌属豌豆亚种突变体在接种豌豆(Pisum sativum)植株时会表现出氮饥饿表型[1],[2]。不定形豌豆根瘤中的类菌体数量减少,染色体数量也较低。它们减少了支链氨基酸生物合成途径的转录,并依赖宿主提供。这被称为“共生营养缺陷型”。
方法/主要发现:在 AapQ 中确定了一个对溶质特异性很重要的区域,改变该区域的 P144D 会使支链氨基酸的转运速率非常低。携带 P144D 的菌株在豌豆上仍能完全有效地进行 N2 固定,表明根瘤菌属豌豆亚种中支链氨基酸转运的低速率支持野生型氮固定速率。然后在其他豆科植物-根瘤菌共生体中研究了支链氨基酸转运的重要性。R. leguminosarum bv. phaseoli 的 aap bra 突变体在接种菜豆(Phaseolus vulgaris)时也表现出氮饥饿症状,菜豆是一种产生定形根瘤的植物。这种表型与在豌豆上观察到的不同,伴随着根瘤数量和每个根瘤固氮量的减少。然而,Sinorhizobium meliloti 2011 的 aap bra 双突变体在紫花苜蓿(Medicago sativa)上没有表现出表型。
结论/意义:在定形豌豆和不定形菜豆根瘤中都发生了共生营养缺陷型,表明它对不同发育程序的豆科植物中类菌体的形成和根瘤功能非常重要。然而,只需要少量的支链氨基酸,而且在测量的条件下,Sinorhizobium meliloti-alfalfa 共生体中没有发生共生营养缺陷型。在接种不同豆科植物的 aap bra 突变体的对比共生表型可能反映了氨基酸可用性的改变时间、共生营养缺陷型的发展以及根瘤发育程序。