Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain.
Department of Biology, Queen's University, Kingston, Ontario, Canada.
mBio. 2021 Feb 22;13(1):e0357621. doi: 10.1128/mbio.03576-21. Epub 2022 Feb 15.
The rhizosphere and rhizoplane are nutrient-rich but selective environments for the root microbiome. Here, we deciphered a posttranscriptional network regulated by the homologous -small RNAs (sRNAs) AbcR1 and AbcR2, which rewire the metabolism of the nitrogen-fixing α-rhizobium Sinorhizobium meliloti during preinfection stages of symbiosis with its legume host alfalfa. The LysR-type regulator LsrB, which transduces the cell redox state, is indispensable for AbcR1 expression in actively dividing bacteria, whereas the stress-induced transcription of AbcR2 depends on the alternative σ factor RpoH1. MS2 affinity purification coupled with RNA sequencing unveiled exceptionally large and overlapping AbcR1/2 mRNA interactomes, jointly representing ⁓6% of the S. meliloti protein-coding genes. Most mRNAs encode transport/metabolic proteins whose translation is silenced by base pairing to two distinct anti-Shine Dalgarno motifs that function independently in both sRNAs. A metabolic model-aided analysis of the targetomes predicted changes in AbcR1/2 expression driven by shifts in carbon/nitrogen sources, which were confirmed experimentally. Low AbcR1/2 levels in some defined media anticipated overexpression growth phenotypes linked to the silencing of specific mRNAs. As a proof of principle, we confirmed AbcR1/2-mediated downregulation of the l-amino acid AapQ permease. AbcR1/2 interactomes are well represented in rhizosphere-related S. meliloti transcriptomic signatures. Remarkably, a lack of AbcR1 specifically compromised the ability of S. meliloti to colonize the root rhizoplane. The AbcR1 regulon likely ranks the utilization of available substrates to optimize metabolism, thus conferring on S. meliloti an advantage for efficient rhizosphere/rhizoplane colonization. AbcR1 regulation is predicted to be conserved in related α-rhizobia, which opens unprecedented possibilities for engineering highly competitive biofertilizers. Nitrogen-fixing root nodule symbioses between rhizobia and legume plants provide more than half of the combined nitrogen incorporated annually into terrestrial ecosystems, rendering plant growth independent of environmentally unfriendly chemical fertilizers. The success of symbiosis depends primarily on the capacity of rhizobia to establish competitive populations in soil and rhizosphere environments. Here, we provide insights into the regulation and architecture of an extensive RNA posttranscriptional network that fine-tunes the metabolism of the alfalfa symbiont S. meliloti, thereby enhancing the ability of this beneficial bacterium to colonize nutrient-rich but extremely selective niches, such as the rhizosphere of its host plant. This pervasive RNA regulation of metabolism is a major adaptive mechanism, predicted to operate in diverse rhizobial species. Because RNA regulation relies on modifiable base-pairing interactions, our findings open unexplored avenues for engineering the legumes rhizobiome within sustainable agricultural practices.
根际和根面是富含营养但对根微生物组具有选择性的环境。在这里,我们破译了由同源 - 小 RNA(sRNA)AbcR1 和 AbcR2 调控的转录后网络,该网络重新布线了固氮 α-根瘤菌 Sinorhizobium meliloti 在与其豆科宿主苜蓿共生的侵染前阶段的代谢。传递细胞氧化还原状态的 LysR 型调节剂 LsrB 对于活跃分裂细菌中 AbcR1 的表达是必不可少的,而 AbcR2 的应激诱导转录依赖于替代 σ 因子 RpoH1。MS2 亲和纯化结合 RNA 测序揭示了异常大和重叠的 AbcR1/2 mRNA 相互作用组,共同代表 ⁓6%的 S. meliloti 蛋白编码基因。大多数 mRNA 编码运输/代谢蛋白,其翻译被与两个独立在两个 sRNA 中起作用的不同反 Shine Dalgarno 基序的碱基配对沉默。基于代谢模型的靶标组分析预测了 AbcR1/2 表达的变化,这些变化由碳/氮源的变化驱动,这在实验中得到了证实。在某些定义的培养基中低 AbcR1/2 水平预示着与特定 mRNA 沉默相关的过表达生长表型。作为一个原理证明,我们证实了 AbcR1/2 介导的 l-氨基酸 AapQ 透性酶的下调。AbcR1/2 相互作用组在与根际相关的 S. meliloti 转录组特征中得到了很好的体现。值得注意的是,AbcR1 的缺乏特异性地削弱了 S. meliloti 定植根际根面的能力。AbcR1 调控子可能对可用底物的利用进行分级,以优化代谢,从而为 S. meliloti 提供在高效根际/根面定殖方面的优势。AbcR1 调节预计在相关的 α-根瘤菌中保守,这为工程化具有高度竞争力的生物肥料开辟了前所未有的可能性。固氮根瘤共生体在根瘤菌和豆科植物之间提供了每年结合到陆地生态系统中的氮的一半以上,使植物生长不受环境不友好的化肥的影响。共生体的成功主要取决于根瘤菌在土壤和根际环境中建立竞争种群的能力。在这里,我们深入了解了广泛的 RNA 转录后网络的调节和结构,该网络微调了苜蓿共生菌 S. meliloti 的代谢,从而增强了这种有益细菌定植富含营养但极其选择性的小生境(如宿主植物的根际)的能力。这种普遍存在的代谢 RNA 调节是一种主要的适应机制,预计在不同的根瘤菌物种中起作用。因为 RNA 调节依赖于可修饰的碱基配对相互作用,我们的发现为在可持续农业实践中对豆类根瘤菌进行工程化开辟了未知的途径。