Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America.
PLoS One. 2010 Nov 11;5(11):e15457. doi: 10.1371/journal.pone.0015457.
Spinal muscular atrophy (SMA) is a major genetic cause of death in childhood characterized by marked muscle weakness. To investigate mechanisms underlying motor impairment in SMA, we examined the spinal and neuromuscular circuitry governing hindlimb ambulatory behavior in SMA model mice (SMNΔ7). In the neuromuscular circuitry, we found that nearly all neuromuscular junctions (NMJs) in hindlimb muscles of SMNΔ7 mice remained fully innervated at the disease end stage and were capable of eliciting muscle contraction, despite a modest reduction in quantal content. In the spinal circuitry, we observed a ∼28% loss of synapses onto spinal motoneurons in the lateral column of lumbar segments 3-5, and a significant reduction in proprioceptive sensory neurons, which may contribute to the 50% reduction in vesicular glutamate transporter 1(VGLUT1)-positive synapses onto SMNΔ7 motoneurons. In addition, there was an increase in the association of activated microglia with SMNΔ7 motoneurons. Together, our results present a novel concept that synaptic defects occur at multiple levels of the spinal and neuromuscular circuitry in SMNΔ7 mice, and that proprioceptive spinal synapses could be a potential target for SMA therapy.
脊髓性肌萎缩症(SMA)是一种主要的儿童期致死性遗传疾病,其特征是明显的肌肉无力。为了研究 SMA 运动障碍的发病机制,我们研究了控制 SMA 模型小鼠(SMNΔ7)后肢步态运动的脊髓和运动神经回路。在运动神经回路中,我们发现尽管量子含量略有减少,但在疾病终末期,SMNΔ7 小鼠后肢肌肉中的几乎所有运动终板都保持完全神经支配,并能够引发肌肉收缩。在脊髓回路中,我们观察到腰段 3-5 侧柱上的脊髓运动神经元上的突触减少了约 28%,而本体感觉神经元显著减少,这可能导致 VGLUT1 阳性突触减少到 SMNΔ7 运动神经元的 50%。此外,激活的小胶质细胞与 SMNΔ7 运动神经元的关联增加。总之,我们的研究结果提出了一个新的概念,即在 SMNΔ7 小鼠的脊髓和运动神经回路的多个水平上都存在突触缺陷,并且本体感觉脊髓突触可能是 SMA 治疗的一个潜在靶点。