Suppr超能文献

脊髓性肌萎缩症小鼠模型中腹侧钙结合蛋白免疫反应性中间神经元上 VGLUT1 突触的保存和正常运动功能。

Preservation of VGLUT1 synapses on ventral calbindin-immunoreactive interneurons and normal locomotor function in a mouse model of spinal muscular atrophy.

机构信息

Section on Developmental Neurobiology, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.

出版信息

J Neurophysiol. 2013 Feb;109(3):702-10. doi: 10.1152/jn.00601.2012. Epub 2012 Nov 7.

Abstract

Dysfunction in sensorimotor synapses is one of the earliest pathological changes observed in a mouse model [spinal muscular atrophy (SMA)Δ7] of spinal muscular atrophy. Here, we examined the density of proprioceptive and cholinergic synapses on calbindin-immunoreactive interneurons ventral to the lateral motor column. This population includes inhibitory Renshaw interneurons that are known to receive synaptic input from muscle spindle afferents and from motoneurons. At postnatal day (P)13, near the end stage of the disease, the somatic area of calbindin(+) neurons in the L1/L2 and L5/L6 segments was reduced in SMAΔ7 mice compared with controls. In addition, the number and density of terminals expressing the glutamate vesicular transporter (VGLUT1) and the vesicular acetylcholine transporter (VAChT) were increased on calbindin(+) cells in the L1-L2 but not in the L5-L6 segments of SMAΔ7 mice. In addition, the isolated spinal cord of SMA mice was able to generate locomotor-like activity at P4-P6 in the presence of a drug cocktail or in response to dorsal root stimulation. These results argue against a generalized loss of proprioceptive input to spinal circuits in SMA and suggest that the loss of proprioceptive synapses on motoneurons may be secondary to motoneuron pathology. The increased number of VGLUT1(+) and VAChT(+) synapses on calbindin(+) neurons in the L1/L2 segments may be the result of homeostatic mechanisms. Finally, we have shown that abnormal locomotor network function is unlikely to account for the motor deficits observed in SMA mice at P4-6.

摘要

运动感觉突触功能障碍是脊髓性肌萎缩症(SMA)Δ7 小鼠模型中最早观察到的病理变化之一。在这里,我们检查了位于侧运动柱腹侧的钙结合蛋白免疫反应性中间神经元上的本体感受和胆碱能突触的密度。该群体包括抑制性 Renshaw 中间神经元,已知其接收来自肌梭传入纤维和运动神经元的突触输入。在出生后第 13 天(P),即疾病的晚期,与对照组相比,SMAΔ7 小鼠 L1/L2 和 L5/L6 节段的钙结合蛋白(+)神经元的体表面积减小。此外,在 SMAΔ7 小鼠的 L1-L2 段,表达谷氨酸囊泡转运蛋白(VGLUT1)和囊泡乙酰胆碱转运蛋白(VAChT)的末端数量和密度增加,但在 L5-L6 段没有增加。此外,在存在药物鸡尾酒或响应背根刺激的情况下,SMA 小鼠的分离脊髓能够在 P4-P6 时产生类似于运动的活动。这些结果表明 SMA 中不存在本体感觉输入到脊髓回路的普遍丧失,并表明运动神经元上本体感觉突触的丧失可能继发于运动神经元病理学。L1/L2 节段钙结合蛋白(+)神经元上 VGLUT1(+)和 VAChT(+)突触数量的增加可能是一种稳态机制的结果。最后,我们已经表明,异常的运动网络功能不太可能解释 P4-6 时 SMA 小鼠观察到的运动缺陷。

相似文献

2
Distribution of cholinergic contacts on Renshaw cells in the rat spinal cord: a light microscopic study.
J Physiol. 1999 Mar 15;515 ( Pt 3)(Pt 3):787-97. doi: 10.1111/j.1469-7793.1999.787ab.x.
3
Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy.
PLoS One. 2010 Nov 11;5(11):e15457. doi: 10.1371/journal.pone.0015457.
5
Primary afferent synapses on developing and adult Renshaw cells.
J Neurosci. 2006 Dec 20;26(51):13297-310. doi: 10.1523/jneurosci.2945-06.2006.
6
Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.
J Comp Neurol. 2016 Jun 15;524(9):1892-919. doi: 10.1002/cne.23946. Epub 2016 Jan 4.
7
Expression of vesicular glutamate transporters, VGLUT1 and VGLUT2, in cholinergic spinal motoneurons.
Eur J Neurosci. 2004 Oct;20(7):1752-60. doi: 10.1111/j.1460-9568.2004.03628.x.
8
Chronic treatment with lithium does not improve neuromuscular phenotype in a mouse model of severe spinal muscular atrophy.
Neuroscience. 2013 Oct 10;250:417-33. doi: 10.1016/j.neuroscience.2013.07.026. Epub 2013 Jul 19.
9
Postnatal phenotype and localization of spinal cord V1 derived interneurons.
J Comp Neurol. 2005 Dec 12;493(2):177-92. doi: 10.1002/cne.20711.
10
Presumptive Renshaw cells contain decreased calbindin during recovery from sciatic nerve lesions.
Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3048-52. doi: 10.1073/pnas.90.7.3048.

引用本文的文献

1
Synaptic imbalance and increased inhibition impair motor function in SMA.
Sci Adv. 2025 Sep 5;11(36):eadt4126. doi: 10.1126/sciadv.adt4126.
2
Synaptic imbalance and increased inhibition impair motor function in SMA.
bioRxiv. 2024 Sep 1:2024.08.30.610545. doi: 10.1101/2024.08.30.610545.
4
Serotonergic dysfunction impairs locomotor coordination in spinal muscular atrophy.
Brain. 2023 Nov 2;146(11):4574-4593. doi: 10.1093/brain/awad221.
5
Emerging concepts underlying selective neuromuscular dysfunction in infantile-onset spinal muscular atrophy.
Neural Regen Res. 2021 Oct;16(10):1978-1984. doi: 10.4103/1673-5374.308073.
7
Motoneuronal Spinal Circuits in Degenerative Motoneuron Disease.
Front Mol Neurosci. 2020 May 25;13:74. doi: 10.3389/fnmol.2020.00074. eCollection 2020.
8
Minor snRNA gene delivery improves the loss of proprioceptive synapses on SMA motor neurons.
JCI Insight. 2020 Jun 18;5(12):130574. doi: 10.1172/jci.insight.130574.
9
Spinal cord organoids add an extra dimension to traditional motor neuron cultures.
Neural Regen Res. 2019 Sep;14(9):1515-1516. doi: 10.4103/1673-5374.255966.

本文引用的文献

1
Neurotransmitter phenotypes of descending systems in the rat lumbar spinal cord.
Neuroscience. 2012 Dec 27;227:67-79. doi: 10.1016/j.neuroscience.2012.09.037. Epub 2012 Sep 24.
2
Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.
J Neurosci. 2012 Jun 20;32(25):8703-15. doi: 10.1523/JNEUROSCI.0204-12.2012.
4
Direct and Indirect Regulation of Spinal Cord Ia Afferent Terminal Formation by the γ-Protocadherins.
Front Mol Neurosci. 2011 Dec 23;4:54. doi: 10.3389/fnmol.2011.00054. eCollection 2011.
6
Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy.
Neuron. 2011 Feb 10;69(3):453-67. doi: 10.1016/j.neuron.2010.12.032.
7
Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy.
PLoS One. 2010 Nov 11;5(11):e15457. doi: 10.1371/journal.pone.0015457.
8
Development and functional organization of spinal locomotor circuits.
Curr Opin Neurobiol. 2011 Feb;21(1):100-9. doi: 10.1016/j.conb.2010.09.004.
9
Clarke's column neurons as the focus of a corticospinal corollary circuit.
Nat Neurosci. 2010 Oct;13(10):1233-9. doi: 10.1038/nn.2637. Epub 2010 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验