Suppr超能文献

优化疫情期间不同时间点的疫苗分配。

Optimizing vaccine allocation at different points in time during an epidemic.

机构信息

Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America.

出版信息

PLoS One. 2010 Nov 11;5(11):e13767. doi: 10.1371/journal.pone.0013767.

Abstract

BACKGROUND

Pandemic influenza A(H1N1) 2009 began spreading around the globe in April of 2009 and vaccination started in October of 2009. In most countries, by the time vaccination started, the second wave of pandemic H1N1 2009 was already under way. With limited supplies of vaccine, we are left to question whether it may be a good strategy to vaccinate the high-transmission groups earlier in the epidemic, but it might be a better use of resources to protect instead the high-risk groups later in the epidemic. To answer this question, we develop a deterministic epidemic model with two age-groups (children and adults) and further subdivide each age group in low and high risk.

METHODS AND FINDINGS

We COMPARE optimal vaccination strategies started at various points in time in two different.

SETTINGS

a population in a developed country where children account for 24% of the population, and a population in a less developed country where children make up the majority of the population, 55%. For each of these populations, we minimize mortality or hospitalizations and we find an optimal vaccination strategy that gives the best vaccine allocation given a starting vaccination time and vaccine coverage level. We find that population structure is an important factor in determining the optimal vaccine distribution. Moreover, the optimal policy is dynamic as there is a switch in the optimal vaccination strategy at some time point just before the peak of the epidemic. For instance, with 25% vaccine coverage, it is better to protect the high-transmission groups before this point, but it is optimal to protect the most vulnerable groups afterward.

CONCLUSIONS

Choosing the optimal strategy before or early in the epidemic makes an important difference in minimizing the number of influenza infections, and consequently the number of influenza deaths or hospitalizations, but the optimal strategy makes little difference after the peak.

摘要

背景

甲型 H1N1 流感大流行于 2009 年 4 月开始在全球范围内传播,2009 年 10 月开始接种疫苗。在大多数国家,当开始接种疫苗时,第二波甲型 H1N1 大流行已经在进行中。由于疫苗供应有限,我们不禁要质疑,在大流行早期为高传播人群接种疫苗是否是一种好策略,但保护大流行后期的高风险人群可能是更好的资源利用方式。为了回答这个问题,我们建立了一个具有两个年龄组(儿童和成人)的确定性传染病模型,并进一步将每个年龄组细分为低风险和高风险人群。

方法和发现

我们在两个不同的环境中比较了在不同时间点开始的最佳疫苗接种策略。

设定

一个发达国家的人群,其中儿童占总人口的 24%,以及一个儿童占多数的欠发达国家的人群,占 55%。对于这两个人群,我们将死亡率或住院率最小化,并找到在给定起始接种时间和疫苗覆盖率水平下的最佳疫苗分配策略。我们发现,人口结构是决定最佳疫苗分配的一个重要因素。此外,最优策略是动态的,因为在大流行高峰期之前的某个时间点,最优疫苗接种策略会发生转变。例如,在 25%的疫苗覆盖率下,在这一点之前保护高传播人群更好,但在之后保护最脆弱的人群是最优的。

结论

在大流行前或早期选择最佳策略对于将流感感染人数、进而将流感死亡或住院人数最小化有重要影响,但最佳策略在高峰期后影响不大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6397/2978681/4ed495af2c33/pone.0013767.g001.jpg

相似文献

1
Optimizing vaccine allocation at different points in time during an epidemic.
PLoS One. 2010 Nov 11;5(11):e13767. doi: 10.1371/journal.pone.0013767.
2
Optimal H1N1 vaccination strategies based on self-interest versus group interest.
BMC Public Health. 2011 Feb 25;11 Suppl 1(Suppl 1):S4. doi: 10.1186/1471-2458-11-S1-S4.
3
Optimal control of vaccination dynamics during an influenza epidemic.
Math Biosci Eng. 2014 Oct;11(5):1045-63. doi: 10.3934/mbe.2014.11.1045.
4
Optimal pandemic influenza vaccine allocation strategies for the Canadian population.
PLoS One. 2010 May 6;5(5):e10520. doi: 10.1371/journal.pone.0010520.
5
Modeling optimal age-specific vaccination strategies against pandemic influenza.
Bull Math Biol. 2012 Apr;74(4):958-80. doi: 10.1007/s11538-011-9704-y. Epub 2011 Dec 7.
6
Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza.
Math Biosci Eng. 2011 Jan;8(1):141-70. doi: 10.3934/mbe.2011.8.141.
7
Vaccination against pandemic influenza A/H1N1v in England: a real-time economic evaluation.
Vaccine. 2010 Mar 11;28(12):2370-84. doi: 10.1016/j.vaccine.2010.01.002. Epub 2010 Jan 21.
8
2009 Pandemic influenza A virus subtype H1N1 vaccination in Africa--successes and challenges.
J Infect Dis. 2012 Dec 15;206 Suppl 1:S22-8. doi: 10.1093/infdis/jis535.
9
Prioritization of vaccine strategy using an age-dependent mathematical model for 2009 A/H1N1 influenza in the Republic of Korea.
J Theor Biol. 2019 Oct 21;479:97-105. doi: 10.1016/j.jtbi.2019.07.011. Epub 2019 Jul 19.

引用本文的文献

1
Analyzing greedy vaccine allocation algorithms for metapopulation disease models.
PLoS Comput Biol. 2025 Jul 21;21(7):e1012539. doi: 10.1371/journal.pcbi.1012539. eCollection 2025 Jul.
2
Dynamic Vaccine Allocation for Control of Human-Transmissible Disease.
Vaccines (Basel). 2024 Sep 9;12(9):1034. doi: 10.3390/vaccines12091034.
4
Comparative performance of between-population vaccine allocation strategies with applications for emerging pandemics.
Vaccine. 2023 Mar 10;41(11):1864-1874. doi: 10.1016/j.vaccine.2022.12.053. Epub 2023 Jan 23.
5
How can age-based vaccine allocation strategies be optimized? A multi-objective optimization framework.
Front Public Health. 2022 Sep 8;10:934891. doi: 10.3389/fpubh.2022.934891. eCollection 2022.
6
Sequential allocation of vaccine to control an infectious disease.
Math Biosci. 2022 Sep;351:108879. doi: 10.1016/j.mbs.2022.108879. Epub 2022 Jul 16.
7
Optimizing one-dose and two-dose cholera vaccine allocation in outbreak settings: A modeling study.
PLoS Negl Trop Dis. 2022 Apr 20;16(4):e0010358. doi: 10.1371/journal.pntd.0010358. eCollection 2022 Apr.
8
Multi-period vaccine allocation model in a pandemic: A case study of COVID-19 in Australia.
Transp Res E Logist Transp Rev. 2022 May;161:102689. doi: 10.1016/j.tre.2022.102689. Epub 2022 Apr 11.
9
Optimal allocation of limited vaccine to minimize the effective reproduction number.
Math Biosci. 2021 Sep;339:108654. doi: 10.1016/j.mbs.2021.108654. Epub 2021 Jun 30.
10
Optimal allocation of limited vaccine to control an infectious disease: Simple analytical conditions.
Math Biosci. 2021 Jul;337:108621. doi: 10.1016/j.mbs.2021.108621. Epub 2021 Apr 27.

本文引用的文献

2
Optimizing infectious disease interventions during an emerging epidemic.
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):923-8. doi: 10.1073/pnas.0908491107. Epub 2009 Dec 28.
3
Optimal pandemic influenza vaccine allocation strategies for the canadian population.
PLoS Curr. 2010 Jan 4;2:RRN1144. doi: 10.1371/currents.rrn1144.
4
Optimizing allocation for a delayed influenza vaccination campaign.
PLoS Curr. 2009 Dec 9;1:RRN1134. doi: 10.1371/currents.RRN1134.
5
Immunogenicity of a monovalent 2009 influenza A(H1N1) vaccine in infants and children: a randomized trial.
JAMA. 2010 Jan 6;303(1):37-46. doi: 10.1001/jama.2009.1911. Epub 2009 Dec 21.
8
Distribution of vaccine/antivirals and the 'least spread line' in a stratified population.
J R Soc Interface. 2010 May 6;7(46):755-64. doi: 10.1098/rsif.2009.0393. Epub 2009 Oct 14.
9
Modelling mitigation strategies for pandemic (H1N1) 2009.
CMAJ. 2009 Nov 10;181(10):673-80. doi: 10.1503/cmaj.091641. Epub 2009 Oct 13.
10
The transmissibility and control of pandemic influenza A (H1N1) virus.
Science. 2009 Oct 30;326(5953):729-33. doi: 10.1126/science.1177373. Epub 2009 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验