Department of Management Science and Engineering, Stanford University, Stanford, CA, United States of America.
Math Biosci. 2022 Sep;351:108879. doi: 10.1016/j.mbs.2022.108879. Epub 2022 Jul 16.
The problem of optimally allocating a limited supply of vaccine to control a communicable disease has broad applications in public health and has received renewed attention during the COVID-19 pandemic. This allocation problem is highly complex and nonlinear. Decision makers need a practical, accurate, and interpretable method to guide vaccine allocation. In this paper we develop simple analytical conditions that can guide the allocation of vaccines over time. We consider four objectives: minimize new infections, minimize deaths, minimize life years lost, or minimize quality-adjusted life years lost due to death. We consider an SIR model with interacting population groups. We approximate the model using Taylor series expansions, and develop simple analytical conditions characterizing the optimal solution to the resulting problem for a single time period. We develop a solution approach in which we allocate vaccines using the analytical conditions in each time period based on the state of the epidemic at the start of the time period. We illustrate our method with an example of COVID-19 vaccination, calibrated to epidemic data from New York State. Using numerical simulations, we show that our method achieves near-optimal results over a wide range of vaccination scenarios. Our method provides a practical, intuitive, and accurate tool for decision makers as they allocate limited vaccines over time, and highlights the need for more interpretable models over complicated black box models to aid in decision making.
在控制传染病方面,如何最优分配有限的疫苗供应是一个具有广泛公共卫生应用的问题,在 COVID-19 大流行期间受到了新的关注。这个分配问题非常复杂和非线性。决策者需要一种实用、准确和可解释的方法来指导疫苗分配。在本文中,我们提出了简单的分析条件,可以指导疫苗的时间分配。我们考虑了四个目标:最小化新感染、最小化死亡、最小化因死亡而损失的寿命年数或最小化因死亡而损失的质量调整寿命年数。我们考虑了一个具有相互作用的人群组的 SIR 模型。我们使用泰勒级数展开来近似模型,并为单一时段的问题的最优解开发了简单的分析条件。我们开发了一种解决方案,在每个时间段内,根据该时间段开始时的疫情状态,根据分析条件分配疫苗。我们用 COVID-19 疫苗接种的一个例子来说明我们的方法,该例子根据纽约州的疫情数据进行了校准。通过数值模拟,我们表明,我们的方法在广泛的疫苗接种方案中都能取得接近最优的结果。我们的方法为决策者提供了一个实用、直观和准确的工具,帮助他们随着时间的推移分配有限的疫苗,并强调需要更具可解释性的模型来替代复杂的黑盒模型,以帮助决策。