Department of Biochemistry, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Strasse 74, D-20359 Hamburg, Germany.
J Mol Biol. 2011 Jan 28;405(4):956-71. doi: 10.1016/j.jmb.2010.11.018. Epub 2010 Nov 16.
Aspartate aminotransferases (AspATs; EC 2.6.1.1) catalyze the conversion of aspartate and α-ketoglutarate into oxaloacetate and glutamate and are key enzymes in the nitrogen metabolism of all organisms. Recent findings suggest that the plasmodial enzyme [Plasmodium falciparum aspartate aminotransferase (PfAspAT)] may also play a pivotal role in energy metabolism and in the de novo biosynthesis of pyrimidines. However, while PfAspAT is a potential drug target, the high homology between the active sites of currently available AspAT structures hinders the development of specific inhibitors of these enzymes. In this article, we report the X-ray structure of the PfAspAT homodimer at a resolution of 2.8 Å. While the overall fold is similar to the currently available structures of other AspATs, the structure presented shows a significant divergence in the conformation of the N-terminal residues. Deletion of these divergent PfAspAT N-terminal residues results in a loss of activity for the recombinant protein, and addition of a peptide containing these 13 N-terminal residues results in inhibition both in vitro and in a lysate isolated from cultured parasites, while the activity of human cytosolic AspAT is unaffected. The finding that the divergent N-terminal amino acids of PfAspAT play a role in catalytic activity indicates that specific inhibition of the enzyme may provide a lead for the development of novel compounds in the treatment of malaria. We also report on the localization of PfAspAT to the parasite cytosol and discuss the implications of the role of PfAspAT in the supply of malate to the parasite mitochondria.
天冬氨酸氨基转移酶(AspATs;EC 2.6.1.1)催化天冬氨酸和α-酮戊二酸转化为草酰乙酸和谷氨酸,是所有生物氮代谢的关键酶。最近的研究结果表明,疟原虫酶[恶性疟原虫天冬氨酸氨基转移酶(PfAspAT)]可能在能量代谢和嘧啶的从头生物合成中也发挥关键作用。然而,尽管 PfAspAT 是一个潜在的药物靶点,但目前可用的 AspAT 结构的活性位点之间的高度同源性阻碍了这些酶的特异性抑制剂的开发。在本文中,我们报告了 PfAspAT 同源二聚体的 X 射线结构,分辨率为 2.8Å。虽然整体折叠与目前可用的其他 AspAT 结构相似,但所呈现的结构显示出 N 端残基构象的显著差异。这些发散 PfAspAT N 端残基的缺失导致重组蛋白失去活性,并且添加含有这些 13 个 N 端残基的肽在体外和从培养寄生虫分离的裂解物中均导致抑制,而人细胞质 AspAT 的活性不受影响。PfAspAT 发散 N 端氨基酸在催化活性中起作用的发现表明,该酶的特异性抑制可能为开发治疗疟疾的新型化合物提供线索。我们还报告了 PfAspAT 定位于寄生虫细胞质,并讨论了 PfAspAT 在向寄生虫线粒体供应苹果酸中的作用的意义。