Suppr超能文献

多个冗余的羧酸转运体支持恶性疟原虫的线粒体代谢。

MULTIPLE, REDUNDANT CARBOXYLIC ACID TRANSPORTERS SUPPORT MITOCHONDRIAL METABOLISM IN PLASMODIUM FALCIPARUM.

作者信息

Rajaram Krithika, Rangel Gabriel W, Munro Justin T, Nair Sethu C, Elahi Rubayet, Llinás Manuel, Prigge Sean T

机构信息

Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205; Present address: Department of Microbiology, The Ohio State University, Columbus, OH 43210.

Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802.

出版信息

J Biol Chem. 2025 May 19:110248. doi: 10.1016/j.jbc.2025.110248.

Abstract

The mitochondrion of the deadliest human malaria parasite, Plasmodium falciparum, is an essential source of cellular acetyl-CoA during the asexual blood-stage of the parasite life cycle. Blocking mitochondrial acetyl-CoA synthesis leads to a hypoacetylated proteome and parasite death. We previously determined that mitochondrial acetyl-CoA is primarily synthesized from glucose-derived pyruvate by α-ketoacid dehydrogenases. Here, we asked if inhibiting the import of glycolytic pyruvate across the mitochondrial inner membrane would affect acetyl-CoA production and, thus, could be a potential target for antimalarial drug development. We selected the two predicted mitochondrial pyruvate carrier proteins, PfMPC1 (PF3D7_1340800) and PfMPC2 (PF3D7_1470400), for genetic knockout and isotopic metabolite tracing via HPLC-MS metabolomic analysis. Surprisingly, we observed that asexual blood-stage parasites could survive the loss of either or both PfMPCs with only minor growth defects, despite a substantial reduction in the amount of glucose-derived isotopic labelling into acetyl-CoA. Furthermore, genetic deletion of two additional mitochondrial carboxylic acid transporters - DTC (PF3D7_0823900, di/tricarboxylic acid carrier) and YHM2 (PF3D7_1223800, a putative citrate/α-ketoglutarate carrier protein) - only mildly affected blood-stage replication, even in the context of PfMPC deficiency. Although we observed no added impact on the incorporation of glucose carbon into acetyl-CoA in these quadruple knockout mutants, we noted a large decrease in glutamine-derived label in tricarboxylic acid cycle metabolites, suggesting that DTC and YHM2 both import glutamine derivatives into the mitochondrion. Altogether, our results demonstrate that redundant routes are used to fuel the blood-stage malaria parasite mitochondrion with imported carbon from two major sources - glucose and glutamine.

摘要

最致命的人类疟原虫——恶性疟原虫的线粒体,是该寄生虫生命周期无性血液阶段细胞乙酰辅酶A的重要来源。阻断线粒体乙酰辅酶A的合成会导致蛋白质组低乙酰化,进而使寄生虫死亡。我们之前确定线粒体乙酰辅酶A主要由α - 酮酸脱氢酶从葡萄糖衍生的丙酮酸合成。在此,我们探讨抑制糖酵解丙酮酸跨线粒体内膜的转运是否会影响乙酰辅酶A的产生,从而能否成为抗疟药物开发的潜在靶点。我们选择了两个预测的线粒体丙酮酸载体蛋白,PfMPC1(PF3D7_1340800)和PfMPC2(PF3D7_1470400),通过高效液相色谱 - 质谱代谢组学分析进行基因敲除和同位素代谢物追踪。令人惊讶的是,我们观察到无性血液阶段的寄生虫在缺失PfMPC1或PfMPC2或两者同时缺失的情况下仍能存活,仅有轻微的生长缺陷,尽管葡萄糖衍生的同位素标记进入乙酰辅酶A的量大幅减少。此外,另外两个线粒体羧酸转运蛋白——DTC(PF3D7_0823900,二/三羧酸载体)和YHM2(PF3D7_1223800,一种假定的柠檬酸/α - 酮戊二酸载体蛋白)的基因缺失,即使在PfMPC缺乏的情况下,也仅对血液阶段的复制产生轻微影响。尽管我们在这些四重敲除突变体中未观察到对葡萄糖碳掺入乙酰辅酶A有额外影响,但我们注意到三羧酸循环代谢物中谷氨酰胺衍生的标记大幅减少,这表明DTC和YHM2都将谷氨酰胺衍生物转运到线粒体中。总之,我们的结果表明,存在冗余途径利用来自葡萄糖和谷氨酰胺这两个主要来源的输入碳为血液阶段疟原虫的线粒体提供燃料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验