Suppr超能文献

一种重布线的绿色荧光蛋白:在非顺序、非环形 GFP 变体中的折叠和功能。

A rewired green fluorescent protein: folding and function in a nonsequential, noncircular GFP permutant.

机构信息

Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States.

出版信息

Biochemistry. 2010 Dec 28;49(51):10773-9. doi: 10.1021/bi100975z. Epub 2010 Dec 3.

Abstract

The sequential order of secondary structural elements in proteins affects the folding and activity to an unknown extent. To test the dependence on sequential connectivity, we reconnected secondary structural elements by their solvent-exposed ends, permuting their sequential order, called "rewiring". This new protein design strategy changes the topology of the backbone without changing the core side chain packing arrangement. While circular and noncircular permutations have been observed in protein structures that are not related by sequence homology, to date no one has attempted to rationally design and construct a protein with a sequence that is noncircularly permuted while conserving three-dimensional structure. Herein, we show that green fluorescent protein can be rewired, still functionally fold, and exhibit wild-type fluorescence excitation and emission spectra.

摘要

蛋白质中二级结构元件的顺序对折叠和活性的影响程度未知。为了测试对顺序连接性的依赖性,我们通过溶剂暴露的末端重新连接二级结构元件,改变它们的顺序,称为“重布线”。这种新的蛋白质设计策略改变了骨架的拓扑结构,而不改变核心侧链堆积排列。虽然在序列同源性没有关系的蛋白质结构中已经观察到了圆形和非圆形的排列,但迄今为止,还没有人试图合理地设计和构建一种序列为非圆形排列但三维结构保守的蛋白质。在这里,我们表明绿色荧光蛋白可以被重新布线,仍然能够功能性折叠,并表现出野生型荧光激发和发射光谱。

相似文献

1
A rewired green fluorescent protein: folding and function in a nonsequential, noncircular GFP permutant.
Biochemistry. 2010 Dec 28;49(51):10773-9. doi: 10.1021/bi100975z. Epub 2010 Dec 3.
2
Quantitative in vivo solubility and reconstitution of truncated circular permutants of green fluorescent protein.
Protein Sci. 2011 Nov;20(11):1775-80. doi: 10.1002/pro.735. Epub 2011 Oct 5.
3
Tolerance of protein folding to a circular permutation in a PDZ domain.
PLoS One. 2012;7(11):e50055. doi: 10.1371/journal.pone.0050055. Epub 2012 Nov 21.
4
Mutants of Discosoma red fluorescent protein with a GFP-like chromophore.
FEBS Lett. 2001 Jan 5;487(3):384-9. doi: 10.1016/s0014-5793(00)02365-6.
5
Local energetic frustration affects the dependence of green fluorescent protein folding on the chaperonin GroEL.
J Biol Chem. 2017 Dec 15;292(50):20583-20591. doi: 10.1074/jbc.M117.808576. Epub 2017 Oct 24.
9
Toward Computationally Designed Self-Reporting Biosensors Using Leave-One-Out Green Fluorescent Protein.
Biochemistry. 2015 Oct 13;54(40):6263-73. doi: 10.1021/acs.biochem.5b00786. Epub 2015 Sep 30.
10
Engineering and characterization of a superfolder green fluorescent protein.
Nat Biotechnol. 2006 Jan;24(1):79-88. doi: 10.1038/nbt1172. Epub 2005 Dec 20.

引用本文的文献

1
NMR Spectroscopy for the Validation of AlphaFold2 Structures.
bioRxiv. 2025 Feb 8:2025.02.04.636507. doi: 10.1101/2025.02.04.636507.
2
A single-domain protein catenane of dihydrofolate reductase.
Natl Sci Rev. 2023 Nov 29;10(11):nwad304. doi: 10.1093/nsr/nwad304. eCollection 2023 Nov.
3
Engineering an efficient and bright split Corynactis californica green fluorescent protein.
Sci Rep. 2021 Sep 16;11(1):18440. doi: 10.1038/s41598-021-98149-8.
4
Toward Computationally Designed Self-Reporting Biosensors Using Leave-One-Out Green Fluorescent Protein.
Biochemistry. 2015 Oct 13;54(40):6263-73. doi: 10.1021/acs.biochem.5b00786. Epub 2015 Sep 30.
5
Exploring the folding pathway of green fluorescent protein through disulfide engineering.
Protein Sci. 2015 Mar;24(3):341-53. doi: 10.1002/pro.2621. Epub 2015 Jan 13.
6
How a spatial arrangement of secondary structure elements is dispersed in the universe of protein folds.
PLoS One. 2014 Sep 22;9(9):e107959. doi: 10.1371/journal.pone.0107959. eCollection 2014.
7
An empirical test of convergent evolution in rhodopsins.
Mol Biol Evol. 2014 Jan;31(1):85-95. doi: 10.1093/molbev/mst171. Epub 2013 Sep 27.
8
Hysteresis as a Marker for Complex, Overlapping Landscapes in Proteins.
J Phys Chem Lett. 2013 Jan 3;4(1):180-188. doi: 10.1021/jz301893w. Epub 2012 Dec 18.
9
Engineering fluorescent protein substrates for the AAA+ Lon protease.
Protein Eng Des Sel. 2013 Apr;26(4):299-305. doi: 10.1093/protein/gzs105. Epub 2013 Jan 28.
10
Kinetic analysis of ribosome-bound fluorescent proteins reveals an early, stable, cotranslational folding intermediate.
J Biol Chem. 2012 Jan 20;287(4):2568-78. doi: 10.1074/jbc.M111.318766. Epub 2011 Nov 28.

本文引用的文献

1
Synthetic control of green fluorescent protein.
J Am Chem Soc. 2009 Nov 11;131(44):15988-9. doi: 10.1021/ja906303f.
2
Green fluorescent protein: structure, folding and chromophore maturation.
Chem Soc Rev. 2009 Oct;38(10):2865-75. doi: 10.1039/b903641p. Epub 2009 Aug 26.
3
The discovery and development of the green fluorescent protein, GFP.
Chem Soc Rev. 2009 Oct;38(10):2821-2. doi: 10.1039/b917331p. Epub 2009 Sep 3.
4
Chromophore packing leads to hysteresis in GFP.
J Mol Biol. 2009 Sep 11;392(1):218-27. doi: 10.1016/j.jmb.2009.06.072. Epub 2009 Jul 3.
5
Protein complementation assays: approaches for the in vivo analysis of protein interactions.
FEBS Lett. 2009 Jun 5;583(11):1684-91. doi: 10.1016/j.febslet.2009.03.002. Epub 2009 Mar 6.
7
Comparative protein structure modeling using Modeller.
Curr Protoc Bioinformatics. 2006 Oct;Chapter 5:Unit-5.6. doi: 10.1002/0471250953.bi0506s15.
8
A comprehensive analysis of non-sequential alignments between all protein structures.
BMC Struct Biol. 2007 Nov 16;7:78. doi: 10.1186/1472-6807-7-78.
9
Identifying the subproteome of kinetically stable proteins via diagonal 2D SDS/PAGE.
Proc Natl Acad Sci U S A. 2007 Oct 30;104(44):17329-34. doi: 10.1073/pnas.0705417104. Epub 2007 Oct 23.
10
The case of the missing ring: radical cleavage of a carbon-carbon bond and implications for GFP chromophore biosynthesis.
J Am Chem Soc. 2007 Mar 21;129(11):3118-26. doi: 10.1021/ja063983u. Epub 2007 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验