Suppr超能文献

核糖体结合荧光蛋白的动力学分析揭示了一个早期、稳定的共翻译折叠中间体。

Kinetic analysis of ribosome-bound fluorescent proteins reveals an early, stable, cotranslational folding intermediate.

机构信息

Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239, USA.

出版信息

J Biol Chem. 2012 Jan 20;287(4):2568-78. doi: 10.1074/jbc.M111.318766. Epub 2011 Nov 28.

Abstract

Protein folding in cells reflects a delicate interplay between biophysical properties of the nascent polypeptide, the vectorial nature and rate of translation, molecular crowding, and cellular biosynthetic machinery. To better understand how this complex environment affects de novo folding pathways as they occur in the cell, we expressed β-barrel fluorescent proteins derived from GFP and RFP in an in vitro system that allows direct analysis of cotranslational folding intermediates. Quantitative analysis of ribosome-bound eCFP and mCherry fusion proteins revealed that productive folding exhibits a sharp threshold as the length of polypeptide from the C terminus to the ribosome peptidyltransferase center is increased. Fluorescence spectroscopy, urea denaturation, and limited protease digestion confirmed that sequestration of only 10-15 C-terminal residues within the ribosome exit tunnel effectively prevents stable barrel formation, whereas folding occurs unimpeded when the C terminus is extended beyond the ribosome exit site. Nascent FPs with 10 of the 11 β-strands outside the ribosome exit tunnel acquire a non-native conformation that is remarkably stable in diverse environments. Upon ribosome release, these structural intermediates fold efficiently with kinetics that are unaffected by the cytosolic crowding or cellular chaperones. Our results indicate that during synthesis, fluorescent protein folding is initiated cotranslationally via rapid formation of a highly stable, on-pathway structural intermediate and that the rate-limiting step of folding involves autonomous incorporation of the 11th β-strand into the mature barrel structure.

摘要

细胞中的蛋白质折叠反映了新生多肽的生物物理特性、翻译的定向性质和速度、分子拥挤以及细胞生物合成机制之间的微妙相互作用。为了更好地了解这种复杂环境如何影响细胞中新生折叠途径,我们在体外系统中表达了源自 GFP 和 RFP 的β-桶荧光蛋白,该系统允许直接分析共翻译折叠中间体。对核糖体结合的 eCFP 和 mCherry 融合蛋白的定量分析表明,当从 C 末端到核糖体肽基转移酶中心的多肽长度增加时,有生产力的折叠表现出明显的阈值。荧光光谱、尿素变性和有限的蛋白酶消化证实,只有 10-15 个 C 末端残基被隔离在核糖体出口隧道内,可有效地阻止稳定桶的形成,而当 C 末端延伸超过核糖体出口位点时,折叠则不受阻碍。在核糖体出口隧道之外的 11 个β-链中的 10 个新生 FP 获得了一种非天然构象,在各种环境中都具有惊人的稳定性。核糖体释放后,这些结构中间体以不受细胞质拥挤或细胞伴侣影响的动力学有效地折叠。我们的结果表明,在合成过程中,荧光蛋白折叠通过快速形成高度稳定的、途径上的结构中间体共翻译起始,折叠的限速步骤涉及第 11 个β-链自主地整合到成熟桶结构中。

相似文献

1
Kinetic analysis of ribosome-bound fluorescent proteins reveals an early, stable, cotranslational folding intermediate.
J Biol Chem. 2012 Jan 20;287(4):2568-78. doi: 10.1074/jbc.M111.318766. Epub 2011 Nov 28.
2
Cotranslational Folding of Proteins on the Ribosome.
Biomolecules. 2020 Jan 7;10(1):97. doi: 10.3390/biom10010097.
3
Cotranslational folding increases GFP folding yield.
Biophys J. 2010 Apr 7;98(7):1312-20. doi: 10.1016/j.bpj.2009.12.4291.
4
Cotranslational Protein Folding inside the Ribosome Exit Tunnel.
Cell Rep. 2015 Sep 8;12(10):1533-40. doi: 10.1016/j.celrep.2015.07.065. Epub 2015 Aug 28.
5
Investigating the Effect of Chain Connectivity on the Folding of a Beta-Sheet Protein On and Off the Ribosome.
J Mol Biol. 2018 Dec 7;430(24):5207-5216. doi: 10.1016/j.jmb.2018.10.011. Epub 2018 Oct 23.
6
How the ribosome shapes cotranslational protein folding.
Curr Opin Struct Biol. 2024 Feb;84:102740. doi: 10.1016/j.sbi.2023.102740. Epub 2023 Dec 9.
7
Folding pathway of an Ig domain is conserved on and off the ribosome.
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):E11284-E11293. doi: 10.1073/pnas.1810523115. Epub 2018 Nov 9.
8
Modeling protein folding in vivo.
Biol Direct. 2018 Jul 6;13(1):13. doi: 10.1186/s13062-018-0217-6.
9
Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding.
Genome Biol. 2021 Jan 5;22(1):16. doi: 10.1186/s13059-020-02256-0.

引用本文的文献

2
A simple method for mapping the location of cross-β-forming regions within protein domains of low sequence complexity.
Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2503382122. doi: 10.1073/pnas.2503382122. Epub 2025 Apr 23.
3
Mechanochemical forces regulate the composition and fate of stalled nascent chains.
bioRxiv. 2024 Oct 14:2024.08.02.606406. doi: 10.1101/2024.08.02.606406.
4
The ribosome lowers the entropic penalty of protein folding.
Nature. 2024 Sep;633(8028):232-239. doi: 10.1038/s41586-024-07784-4. Epub 2024 Aug 7.
5
Translation Rates and Protein Folding.
J Mol Biol. 2024 Jul 15;436(14):168384. doi: 10.1016/j.jmb.2023.168384. Epub 2023 Dec 6.
7
A switch from α-helical to β-strand conformation during co-translational protein folding.
EMBO J. 2022 Feb 15;41(4):e109175. doi: 10.15252/embj.2021109175. Epub 2022 Jan 7.
8
Mechanisms of Cotranslational Protein Maturation in Bacteria.
Front Mol Biosci. 2021 May 25;8:689755. doi: 10.3389/fmolb.2021.689755. eCollection 2021.
9
The ribosome modulates folding inside the ribosomal exit tunnel.
Commun Biol. 2021 May 5;4(1):523. doi: 10.1038/s42003-021-02055-8.

本文引用的文献

2
Ligand-driven vectorial folding of ribosome-bound human CFTR NBD1.
Mol Cell. 2011 Mar 18;41(6):682-92. doi: 10.1016/j.molcel.2011.02.027.
3
Conformational dynamics of the molecular chaperone Hsp90.
Q Rev Biophys. 2011 May;44(2):229-55. doi: 10.1017/S0033583510000314. Epub 2011 Mar 18.
4
Light-activated reassembly of split green fluorescent protein.
J Am Chem Soc. 2011 Mar 23;133(11):4046-52. doi: 10.1021/ja110256c. Epub 2011 Feb 25.
5
Biogenesis of the pore architecture of a voltage-gated potassium channel.
Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3240-5. doi: 10.1073/pnas.1017097108. Epub 2011 Feb 7.
6
A rewired green fluorescent protein: folding and function in a nonsequential, noncircular GFP permutant.
Biochemistry. 2010 Dec 28;49(51):10773-9. doi: 10.1021/bi100975z. Epub 2010 Dec 3.
7
Transient tertiary structure formation within the ribosome exit port.
J Am Chem Soc. 2010 Dec 1;132(47):16928-37. doi: 10.1021/ja106530y. Epub 2010 Nov 9.
8
Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy.
Proc Natl Acad Sci U S A. 2010 May 18;107(20):9111-6. doi: 10.1073/pnas.0914300107. Epub 2010 May 3.
9
Cotranslational folding increases GFP folding yield.
Biophys J. 2010 Apr 7;98(7):1312-20. doi: 10.1016/j.bpj.2009.12.4291.
10
Probing ribosome-nascent chain complexes produced in vivo by NMR spectroscopy.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22239-44. doi: 10.1073/pnas.0903750106. Epub 2009 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验