Suppr超能文献

树突状细胞作为癌症疫苗的增强作用。

Enhancement of dendritic cells as vaccines for cancer.

机构信息

Baylor College of Medicine, Houston, TX 77030, USA.

出版信息

Immunotherapy. 2010 Nov;2(6):847-62. doi: 10.2217/imt.10.56.

Abstract

Dendritic cells are the most potent antigen-presenting cells known; owing to their ability to stimulate antigen-specific cytolytic and memory T-cell responses, their use as cancer vaccines is rapidly increasing. While clinical trials provide evidence that dendritic cells vaccines are safe and elicit immunological responses in most patients, few complete tumor remissions have been reported and further technological advances are required. An effective dendritic cell vaccine must possess and maintain several characteristics: it must migrate to lymph nodes, have a mature, Th1-polarizing phenotype expressed stably after infusion and present antigen for sufficient time to produce a T-cell response capable of eliminating a tumor. While dendritic cells are readily matured ex vivo, their phenotype and fate after infusion are rarely evaluable; therefore, strategies to ensure that dendritic cells access lymphoid tissues and retain an immunostimulatory phenotype are required. In order to best exploit dendritic cells as vaccines, they may require genetic modification and combination with other strategies including adoptive T-cell transfer, inhibition of regulatory T cells or modulation of inflammatory pathways.

摘要

树突状细胞是目前所知最有效的抗原呈递细胞;由于其能够刺激抗原特异性细胞毒性和记忆 T 细胞反应,因此它们作为癌症疫苗的应用正在迅速增加。虽然临床试验提供了证据表明树突状细胞疫苗是安全的,并在大多数患者中引起免疫反应,但很少有完全的肿瘤缓解报告,需要进一步的技术进步。有效的树突状细胞疫苗必须具备并保持几个特征:它必须迁移到淋巴结,在输注后具有稳定表达的成熟、Th1 极化表型,并呈递抗原足够长的时间以产生能够消除肿瘤的 T 细胞反应。虽然树突状细胞很容易在体外成熟,但它们输注后的表型和命运很少能评估;因此,需要确保树突状细胞进入淋巴组织并保持免疫刺激表型的策略。为了最大限度地利用树突状细胞作为疫苗,它们可能需要遗传修饰,并与其他策略结合使用,包括过继性 T 细胞转移、抑制调节性 T 细胞或调节炎症途径。

相似文献

1
Enhancement of dendritic cells as vaccines for cancer.
Immunotherapy. 2010 Nov;2(6):847-62. doi: 10.2217/imt.10.56.
2
Dendritic cell gene therapy.
Surg Oncol Clin N Am. 2002 Jul;11(3):645-60. doi: 10.1016/s1055-3207(02)00027-3.
3
Enhanced responses to tumor immunization following total body irradiation are time-dependent.
PLoS One. 2013 Dec 12;8(12):e82496. doi: 10.1371/journal.pone.0082496. eCollection 2013.
4
Cancer vaccines based on dendritic cells loaded with tumor-associated antigens.
Cell Biol Toxicol. 2001;17(2):67-75. doi: 10.1023/a:1010944003649.
6
T cells as vehicles for cancer vaccination.
J Biomed Biotechnol. 2011;2011:417403. doi: 10.1155/2011/417403. Epub 2011 Oct 27.
8
Dendritic cell based tumor vaccines.
Immunol Lett. 2000 Sep 15;74(1):5-10. doi: 10.1016/s0165-2478(00)00243-1.
9
mRNA-based dendritic cell vaccines.
Expert Rev Vaccines. 2015 Feb;14(2):161-76. doi: 10.1586/14760584.2014.957684. Epub 2014 Sep 8.
10
Genetic vaccines to potentiate the effective CD103+ dendritic cell-mediated cross-priming of antitumor immunity.
J Immunol. 2015 Jun 15;194(12):5937-47. doi: 10.4049/jimmunol.1500089. Epub 2015 May 13.

引用本文的文献

2
Development of Cell Technologies Based on Dendritic Cells for Immunotherapy of Oncological Diseases.
Biomedicines. 2024 Mar 21;12(3):699. doi: 10.3390/biomedicines12030699.
3
Exploring cellular immunotherapy platforms in multiple myeloma.
Heliyon. 2024 Mar 13;10(6):e27892. doi: 10.1016/j.heliyon.2024.e27892. eCollection 2024 Mar 30.
4
Nucleic acid vaccination strategies for ovarian cancer.
Front Bioeng Biotechnol. 2022 Nov 7;10:953887. doi: 10.3389/fbioe.2022.953887. eCollection 2022.
5
Extracellular Vesicles and Their Current Role in Cancer Immunotherapy.
Cancers (Basel). 2021 May 10;13(9):2280. doi: 10.3390/cancers13092280.
6
From Melanoma Development to RNA-Modified Dendritic Cell Vaccines: Highlighting the Lessons From the Past.
Front Immunol. 2021 Feb 22;12:623639. doi: 10.3389/fimmu.2021.623639. eCollection 2021.
9
Advances in Lipid Nanoparticles for mRNA-Based Cancer Immunotherapy.
Front Chem. 2020 Oct 23;8:589959. doi: 10.3389/fchem.2020.589959. eCollection 2020.
10
T Cells Modified with CD70 as an Alternative Cellular Vaccine for Antitumor Immunity.
Cancer Res Treat. 2020 Jul;52(3):747-763. doi: 10.4143/crt.2019.721. Epub 2020 Feb 14.

本文引用的文献

1
IRAK-M removal counteracts dendritic cell vaccine deficits in migration and longevity.
J Immunol. 2010 Oct 1;185(7):4223-32. doi: 10.4049/jimmunol.0903507. Epub 2010 Sep 3.
2
Blockade of programmed death ligand 1 enhances the therapeutic efficacy of combination immunotherapy against melanoma.
J Immunol. 2010 Apr 1;184(7):3442-9. doi: 10.4049/jimmunol.0904114. Epub 2010 Mar 1.
4
Targeting MARCO can lead to enhanced dendritic cell motility and anti-melanoma activity.
Cancer Immunol Immunother. 2010 Jun;59(6):875-84. doi: 10.1007/s00262-009-0813-5. Epub 2010 Jan 8.
6
Human suppressor of cytokine signaling 1 controls immunostimulatory activity of monocyte-derived dendritic cells.
Cancer Res. 2009 Oct 15;69(20):8076-84. doi: 10.1158/0008-5472.CAN-09-1507. Epub 2009 Sep 29.
7
Harnessing dendritic cells to generate cancer vaccines.
Ann N Y Acad Sci. 2009 Sep;1174:88-98. doi: 10.1111/j.1749-6632.2009.05000.x.
8
Dendritic cell-based vaccines for pancreatic cancer and melanoma.
Ann N Y Acad Sci. 2009 Sep;1174:33-40. doi: 10.1111/j.1749-6632.2009.04936.x.
9
Tumor vaccines expressing flt3 ligand synergize with ctla-4 blockade to reject preimplanted tumors.
Cancer Res. 2009 Oct 1;69(19):7747-55. doi: 10.1158/0008-5472.CAN-08-3289. Epub 2009 Sep 8.
10
The Dectin-2 family of C-type lectins in immunity and homeostasis.
Cytokine. 2009 Oct-Nov;48(1-2):148-55. doi: 10.1016/j.cyto.2009.07.010. Epub 2009 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验