Yang Hyun Mo, Macoris Maria de Lourdes da Graça, Galvani Karen Cristina, Andrighetti Maria Teresa Macoris
UNICAMP - IMECC, Departamento de Matemática Aplicada, Campinas, SP, Brazil.
Biosystems. 2011 Mar;103(3):360-71. doi: 10.1016/j.biosystems.2010.11.002. Epub 2010 Nov 17.
The dengue virus is a vector-borne disease transmitted by mosquito Aedes aegypti and the incidence is strongly influenced by temperature and humidity which vary seasonally. To assess the effects of temperature on dengue transmission, mathematical models are developed based on the population dynamics theory. However, depending on the hypotheses of the modelling, different outcomes regarding to the risk of epidemics are obtained. We address this question comparing two simple models supplied with model's parameters estimated from temperature-controlled experiments, especially the entomological parameters regarded to the mosquito's life cycle in different temperatures. Once obtained the mortality and transition rates of different stages comprising the life cycle of mosquito and the oviposition rate, we compare the capacity of vector reproduction (the basic offspring number) and the risk of infection (basic reproduction number) provided by two models. The extended model, which is more realistic, showed that both mosquito population and dengue risk are situated at higher values than the simplified model, even that the basic offspring number is lower.
登革热病毒是一种由埃及伊蚊传播的媒介传播疾病,其发病率受季节性变化的温度和湿度影响很大。为了评估温度对登革热传播的影响,基于种群动力学理论建立了数学模型。然而,根据建模假设的不同,会得出关于疫情风险的不同结果。我们通过比较两个简单模型来解决这个问题,这两个模型的参数是根据温度控制实验估计得出的,特别是与不同温度下蚊子生命周期相关的昆虫学参数。一旦获得了构成蚊子生命周期不同阶段的死亡率、转移率和产卵率,我们就比较这两个模型提供的病媒繁殖能力(基本后代数量)和感染风险(基本繁殖数)。更现实的扩展模型表明,即使基本后代数量较低,但蚊子种群数量和登革热风险均高于简化模型。