Suppr超能文献

通过介观神经活动的稀疏解码将视觉刺激映射到感知决策。

Mapping visual stimuli to perceptual decisions via sparse decoding of mesoscopic neural activity.

作者信息

Sajda Paul

机构信息

Department of Biomedical Engineering, Columbia University, New York, 410027, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4521. doi: 10.1109/IEMBS.2010.5626062.

Abstract

In this talk I will describe our work investigating sparse decoding of neural activity, given a realistic mapping of the visual scene to neuronal spike trains generated by a model of primary visual cortex (V1). We use a linear decoder which imposes sparsity via an L1 norm. The decoder can be viewed as a decoding neuron (linear summation followed by a sigmoidal nonlinearity) in which there are relatively few non-zero synaptic weights. We find: (1) the best decoding performance is for a representation that is sparse in both space and time, (2) decoding of a temporal code results in better performance than a rate code and is also a better fit to the psychophysical data, (3) the number of neurons required for decoding increases monotonically as signal-to-noise in the stimulus decreases, with as little as 1% of the neurons required for decoding at the highest signal-to-noise levels, and (4) sparse decoding results in a more accurate decoding of the stimulus and is a better fit to psychophysical performance than a distributed decoding, for example one imposed by an L2 norm. We conclude that sparse coding is well-justified from a decoding perspective in that it results in a minimum number of neurons and maximum accuracy when sparse representations can be decoded from the neural dynamics.

摘要

在本次演讲中,我将描述我们的工作,即在给定视觉场景到由初级视觉皮层(V1)模型生成的神经元尖峰序列的现实映射的情况下,研究神经活动的稀疏解码。我们使用通过L1范数施加稀疏性的线性解码器。该解码器可以被视为一个解码神经元(线性求和后接一个S型非线性),其中非零突触权重相对较少。我们发现:(1)最佳解码性能是针对在空间和时间上都稀疏的表示;(2)对时间编码的解码比速率编码具有更好的性能,并且也更符合心理物理学数据;(3)随着刺激中的信噪比降低,解码所需的神经元数量单调增加,在最高信噪比水平下,解码所需的神经元数量低至1%;(4)与分布式解码(例如由L2范数施加的解码)相比,稀疏解码能更准确地解码刺激,并且更符合心理物理学性能。我们得出结论,从解码的角度来看,稀疏编码是合理的,因为当可以从神经动力学中解码稀疏表示时,它能使所需神经元数量最少且准确性最高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验