Suppr超能文献

Estimation of dynamic neural activity using a Kalman filter approach based on physiological models.

作者信息

Giraldo E, den Dekker A J, Castellanos-Dominguez G

机构信息

Faculty of Electrical and Electronic Engineering, Physics and Computer Science, Technological University of Pereira, Colombia.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:2914-7. doi: 10.1109/IEMBS.2010.5626281.

Abstract

This paper presents a new method to estimate dynamic neural activity from EEG signals. The method is based on a Kalman filter approach, using physiological models that take both spatial and temporal dynamics into account. The filter's performance (in terms of estimation error) is analyzed for the cases of linear and nonlinear models having either time invariant or time varying parameters. The best performance is achieved with a nonlinear model with time-varying parameters.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验