Suppr超能文献

功能磁共振成像中大脑活动联合检测估计的变分解法

Variational solution to the joint detection estimation of brain activity in fMRI.

作者信息

Chaari Lotfi, Forbes Florence, Vincent Thomas, Dojat Michel, Ciuciu Philippe

机构信息

INRIA, MISTIS, Grenoble, France.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 2):260-8. doi: 10.1007/978-3-642-23629-7_32.

Abstract

We address the issue of jointly detecting brain activity and estimating underlying brain hemodynamics from functional MRI data. We adopt the so-called Joint Detection Estimation (JDE) framework that takes spatial dependencies between voxels into account. We recast the JDE into a missing data framework and derive a Variational Expectation-Maximization (VEM) algorithm for its inference. It follows a new algorithm that has interesting advantages over the previously used intensive simulation methods (Markov Chain Monte Carlo, MCMC): tests on artificial data show that the VEM-JDE is more robust to model mis-specification while additional tests on real data confirm that it achieves similar performance in much less computation time.

摘要

我们探讨了从功能磁共振成像(fMRI)数据中联合检测大脑活动并估计潜在脑血流动力学的问题。我们采用了所谓的联合检测估计(JDE)框架,该框架考虑了体素之间的空间依赖性。我们将JDE重新构建为一个缺失数据框架,并推导了一种变分期望最大化(VEM)算法用于其推理。它遵循一种新算法,与先前使用的密集模拟方法(马尔可夫链蒙特卡罗,MCMC)相比具有有趣的优势:对人工数据的测试表明,VEM-JDE对模型错误指定更具鲁棒性,而对真实数据的额外测试证实,它在更短的计算时间内实现了类似的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验