Nie Jie, Wei Zhiqiang, Jia Wenyan, Li Lu, Fernstrom John D, Sclabassi Robert J, Sun Mingui
Department of Computer Science, Ocean University of China, Qingdao, China.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4312-5. doi: 10.1109/IEMBS.2010.5626204.
An automatic detector that finds circular dining plates in chronically recorded images or videos is reported for the study of food intake and obesity. We first detect edges from input images. After a number of processing steps that convert edges into curves, arc filtering and grouping algorithms are applied. Then, convex hulls are identified and the ones that fit the description of ellipses corresponding to dining plates are determined. Our experiments using real-world images indicate that this detector is highly reliable and robust even when the input images contain complex background scenes and the dining plates are severely occluded.
本文报道了一种自动检测器,用于在长期记录的图像或视频中寻找圆形餐盘,以研究食物摄入量和肥胖问题。我们首先从输入图像中检测边缘。经过一系列将边缘转换为曲线的处理步骤后,应用弧形滤波和分组算法。然后,识别凸包,并确定符合餐盘对应椭圆描述的凸包。我们使用真实世界图像进行的实验表明,即使输入图像包含复杂的背景场景且餐盘被严重遮挡,该检测器也具有高度的可靠性和鲁棒性。