Suppr超能文献

使用可穿戴计算机进行个人饮食评估的显著性感知食物图像分割

Saliency-aware food image segmentation for personal dietary assessment using a wearable computer.

作者信息

Chen Hsin-Chen, Jia Wenyan, Sun Xin, Li Zhaoxin, Li Yuecheng, Fernstrom John D, Burke Lora E, Baranowski Thomas, Sun Mingui

机构信息

Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, MO, USA ; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.

Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Meas Sci Technol. 2015 Feb;26(2). doi: 10.1088/0957-0233/26/2/025702.

Abstract

Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing holds much promise since it may eventually lead to automatic dietary assessment. In this paper we study the problem of segmenting food objects from images. This segmentation is difficult because of various food types, shapes and colors, different decorating patterns on food containers, and occlusions of food and non-food objects. We propose a novel method based on a saliency-aware active contour model (ACM) for automatic food segmentation from images acquired by a wearable camera. An integrated saliency estimation approach based on food location priors and visual attention features is designed to produce a salient map of possible food regions in the input image. Next, a geometric contour primitive is generated and fitted to the salient map by means of multi-resolution optimization with respect to a set of affine and elastic transformation parameters. The food regions are then extracted after contour fitting. Our experiments using 60 food images showed that the proposed method achieved significantly higher accuracy in food segmentation when compared to conventional segmentation methods.

摘要

基于图像的饮食评估最近在肥胖研究领域受到了广泛关注。在这种评估中,数字图片中的食物被识别出来,并估算其份量大小(体积)。尽管目前最常用的方法是人工处理,但图像处理具有很大的潜力,因为它最终可能实现饮食评估的自动化。在本文中,我们研究了从图像中分割食物对象的问题。由于食物类型、形状和颜色各异,食物容器上有不同的装饰图案,以及食物与非食物对象之间的遮挡,这种分割很困难。我们提出了一种基于显著度感知主动轮廓模型(ACM)的新颖方法,用于从可穿戴相机获取的图像中自动分割食物。设计了一种基于食物位置先验和视觉注意力特征的综合显著度估计方法,以生成输入图像中可能的食物区域的显著度图。接下来,通过对一组仿射和弹性变换参数进行多分辨率优化,生成几何轮廓基元并将其拟合到显著度图上。然后在轮廓拟合后提取食物区域。我们使用60张食物图像进行的实验表明,与传统分割方法相比,该方法在食物分割方面取得了显著更高的准确率。

相似文献

10
SCG: Saliency and Contour Guided Salient Instance Segmentation.SCG:显著性与轮廓引导的显著实例分割
IEEE Trans Image Process. 2021;30:5862-5874. doi: 10.1109/TIP.2021.3088282. Epub 2021 Jun 28.

本文引用的文献

2
Designing a Wearable Computer for Lifestyle Evaluation.设计一款用于生活方式评估的可穿戴计算机。
Proc IEEE Annu Northeast Bioeng Conf. 2012;2012:93-94. doi: 10.1109/NEBC.2012.6206978.
7
D-Snake: Image Registration by As-Similar-As-Possible Template Deformation.D-Snake:基于尽可能相似的模板变形的图像配准。
IEEE Trans Vis Comput Graph. 2013 Feb;19(2):331-43. doi: 10.1109/TVCG.2012.134. Epub 2012 Jun 12.
9
A computational approach to edge detection.一种基于计算的边缘检测方法。
IEEE Trans Pattern Anal Mach Intell. 1986 Jun;8(6):679-98.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验