Suppr超能文献

公共空间模式补丁——一种用于自适应脑机接口的优化滤波器集成

Common spatial pattern patches - an optimized filter ensemble for adaptive brain-computer interfaces.

作者信息

Sannelli Claudia, Vidaurre Carmen, Muller Klaus-Robert, Blankertz Benjamin

机构信息

Berlin Institute of Technology, Machine Learning Laboratory, Germany.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4351-4. doi: 10.1109/IEMBS.2010.5626227.

Abstract

Laplacian filters are commonly used in Brain Computer Interfacing (BCI). When only data from few channels are available, or when, like at the beginning of an experiment, no previous data from the same user is available complex features cannot be used. In this case band power features calculated from Laplacian filtered channels represents an easy, robust and general feature to control a BCI, since its calculation does not involve any class information. For the same reason, the performance obtained with Laplacian features is poor in comparison to subject-specific optimized spatial filters, such as Common Spatial Patterns (CSP) analysis, which, on the other hand, can be used just in a later phase of the experiment, since they require a considerable amount of training data in order to enroll a stable and good performance. This drawback is particularly evident in case of poor performing BCI users, whose data is highly non-stationary and contains little class relevant information. Therefore, Laplacian filtering is preferred to CSP, e.g., in the initial period of co-adaptive calibration, a novel BCI paradigm designed to alleviate the problem of BCI illiteracy. In fact, in the co-adaptive calibration design the experiment starts with a subject-independent classifier and simple features are needed in order to obtain a fast adaptation of the classifier to the newly acquired user's data. Here, the use of an ensemble of local CSP patches (CSPP) is proposed, which can be considered as a compromise between Laplacians and CSP: CSPP needs less data and channels than CSP, while being superior to Laplacian filtering. This property is shown to be particularly useful for the co-adaptive calibration design and is demonstrated on off-line data from a previous co-adaptive BCI study.

摘要

拉普拉斯滤波器常用于脑机接口(BCI)。当仅有少数通道的数据可用时,或者像在实验开始时,没有来自同一用户的先前数据可用时,就无法使用复杂特征。在这种情况下,从拉普拉斯滤波通道计算出的带功率特征代表了一种简单、稳健且通用的用于控制BCI的特征,因为其计算不涉及任何类别信息。出于同样的原因,与特定于个体的优化空间滤波器(如共同空间模式(CSP)分析)相比,使用拉普拉斯特征获得的性能较差。另一方面,CSP分析只有在实验的后期阶段才能使用,因为它们需要大量的训练数据才能获得稳定且良好的性能。在表现不佳的BCI用户的情况下,这一缺点尤为明显,他们的数据高度非平稳且包含很少的与类别相关的信息。因此例如在共自适应校准的初始阶段,拉普拉斯滤波比CSP更受青睐,共自适应校准是一种旨在缓解BCI文盲问题的新型BCI范式。事实上,在共自适应校准设计中,实验从一个与个体无关的分类器开始,并且需要简单的特征以便使分类器快速适应新获取的用户数据。在此,提出了使用局部CSP补丁集合(CSPP),它可以被视为拉普拉斯滤波器和CSP之间的一种折衷:CSPP比CSP需要更少的数据和通道,同时优于拉普拉斯滤波。这一特性被证明对于共自适应校准设计特别有用,并在先前共自适应BCI研究的离线数据上得到了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验