Suppr超能文献

迈向脑机接口文盲的治愈之路。

Towards a cure for BCI illiteracy.

机构信息

Machine Learning Dp, Berlin Institute of Technology, Franklinstr. 28/29, 10587, Berlin, Germany.

出版信息

Brain Topogr. 2010 Jun;23(2):194-8. doi: 10.1007/s10548-009-0121-6. Epub 2009 Nov 28.

Abstract

Brain-Computer Interfaces (BCIs) allow a user to control a computer application by brain activity as acquired, e.g., by EEG. One of the biggest challenges in BCI research is to understand and solve the problem of "BCI Illiteracy", which is that BCI control does not work for a non-negligible portion of users (estimated 15 to 30%). Here, we investigate the illiteracy problem in BCI systems which are based on the modulation of sensorimotor rhythms. In this paper, a sophisticated adaptation scheme is presented which guides the user from an initial subject-independent classifier that operates on simple features to a subject-optimized state-of-the-art classifier within one session while the user interacts the whole time with the same feedback application. While initial runs use supervised adaptation methods for robust co-adaptive learning of user and machine, final runs use unsupervised adaptation and therefore provide an unbiased measure of BCI performance. Using this approach, which does not involve any offline calibration measurement, good performance was obtained by good BCI participants (also one novice) after 3-6 min of adaptation. More importantly, the use of machine learning techniques allowed users who were unable to achieve successful feedback before to gain significant control over the BCI system. In particular, one participant had no peak of the sensory motor idle rhythm in the beginning of the experiment, but could develop such peak during the course of the session (and use voluntary modulation of its amplitude to control the feedback application).

摘要

脑机接口 (BCI) 允许用户通过大脑活动来控制计算机应用程序,例如通过 EEG 来实现。BCI 研究中最大的挑战之一是理解和解决“BCI 文盲”问题,即 BCI 控制对相当一部分用户(估计为 15%至 30%)不起作用。在这里,我们研究了基于感觉运动节律调制的 BCI 系统中的文盲问题。在本文中,提出了一种复杂的自适应方案,该方案在一个会话中引导用户从最初的基于简单特征的无主体分类器逐渐过渡到基于主体优化的最先进分类器,同时用户始终与同一反馈应用程序进行交互。虽然初始运行使用监督自适应方法进行稳健的共同自适应学习用户和机器,但最终运行使用无监督自适应方法,因此提供了 BCI 性能的无偏测量。使用这种方法,不需要任何离线校准测量,即使是好的 BCI 参与者(也包括一个新手),经过 3-6 分钟的适应后,也能获得良好的性能。更重要的是,机器学习技术的使用允许那些之前无法获得成功反馈的用户对 BCI 系统获得显著的控制。特别是,有一位参与者在实验开始时没有感觉运动静止节律的峰值,但在会话过程中可以发展出这样的峰值(并使用其幅度的自愿调制来控制反馈应用程序)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c9e/2874052/496f1209fcd6/10548_2009_121_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验