Velasquez-Martinez Luisa, Caicedo-Acosta Julián, Castellanos-Dominguez Germán
Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170004, Colombia.
Entropy (Basel). 2020 Jun 24;22(6):703. doi: 10.3390/e22060703.
Assessment of brain dynamics elicited by motor imagery (MI) tasks contributes to clinical and learning applications. In this regard, Event-Related Desynchronization/Synchronization (ERD/S) is computed from Electroencephalographic signals, which show considerable variations in complexity. We present an Entropy-based method, termed , for estimation of ERD/S using quantized stochastic patterns as a symbolic space, aiming to improve their discriminability and physiological interpretability. The proposed method builds the probabilistic priors by assessing the Gaussian similarity between the input measured data and their reduced vector-quantized representation. The validating results of a bi-class imagine task database (left and right hand) prove that holds symbols that encode several neighboring samples, providing similar or even better accuracy than the other baseline sample-based algorithms of Entropy estimation. Besides, the performed ERD/S time-series are close enough to the trajectories extracted by the variational percentage of EEG signal power and fulfill the physiological MI paradigm. In BCI literate individuals, the estimator presents the most accurate outcomes at a lower amount of electrodes placed in the sensorimotor cortex so that reduced channel set directly involved with the MI paradigm is enough to discriminate between tasks, providing an accuracy similar to the performed by the whole electrode set.
对运动想象(MI)任务引发的脑动力学进行评估有助于临床和学习应用。在这方面,事件相关去同步化/同步化(ERD/S)是根据脑电图信号计算得出的,这些信号在复杂性上表现出相当大的差异。我们提出了一种基于熵的方法,称为 ,用于使用量化随机模式作为符号空间来估计ERD/S,旨在提高其可辨别性和生理可解释性。该方法通过评估输入测量数据与其降维矢量量化表示之间的高斯相似度来构建概率先验。一个二分类想象任务数据库(左手和右手)的验证结果证明, 持有编码几个相邻样本的符号,提供了与其他基于样本的熵估计基线算法相似甚至更好的准确性。此外,所执行的ERD/S时间序列与通过脑电图信号功率变化百分比提取的轨迹足够接近,并符合生理MI范式。在熟悉脑机接口的个体中, 估计器在放置于感觉运动皮层的电极数量较少时呈现出最准确的结果,因此直接参与MI范式的简化通道集足以区分任务,提供与整个电极集执行的结果相似的准确性。