Suppr超能文献

基于统计形状模型的CT扫描肝脏自动分割

Automatic liver segmentation from CT scans based on a statistical shape model.

作者信息

Zhang Xing, Tian Jie, Deng Kexin, Wu Yongfang, Li Xiuli

机构信息

Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5351-4. doi: 10.1109/IEMBS.2010.5626470.

Abstract

In this paper, we present an algorithm for automatic liver segmentation from CT scans which is based on a statistical shape model. The proposed method is a hybrid method that combines three steps: 1) Localization of the average liver shape model in a test CT volume via 3D generalized Hough transform; 2) Subspace initialization of the statistical shape model; 3) Deformation of the shape model to adapt to liver contour through an optimal surface detection approach based on graph theory. The proposed method is evaluated on MICCAI 2007 liver segmentation challenge datasets. The experiment results demonstrate availability of the proposed method.

摘要

在本文中,我们提出了一种基于统计形状模型从CT扫描中自动分割肝脏的算法。所提出的方法是一种混合方法,它结合了三个步骤:1)通过三维广义霍夫变换在测试CT体积中定位平均肝脏形状模型;2)统计形状模型的子空间初始化;3)基于图论的最优表面检测方法使形状模型变形以适应肝脏轮廓。所提出的方法在MICCAI 2007肝脏分割挑战数据集上进行了评估。实验结果证明了该方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验