Zhang Xing, Tian Jie, Deng Kexin, Wu Yongfang, Li Xiuli
Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5351-4. doi: 10.1109/IEMBS.2010.5626470.
In this paper, we present an algorithm for automatic liver segmentation from CT scans which is based on a statistical shape model. The proposed method is a hybrid method that combines three steps: 1) Localization of the average liver shape model in a test CT volume via 3D generalized Hough transform; 2) Subspace initialization of the statistical shape model; 3) Deformation of the shape model to adapt to liver contour through an optimal surface detection approach based on graph theory. The proposed method is evaluated on MICCAI 2007 liver segmentation challenge datasets. The experiment results demonstrate availability of the proposed method.
在本文中,我们提出了一种基于统计形状模型从CT扫描中自动分割肝脏的算法。所提出的方法是一种混合方法,它结合了三个步骤:1)通过三维广义霍夫变换在测试CT体积中定位平均肝脏形状模型;2)统计形状模型的子空间初始化;3)基于图论的最优表面检测方法使形状模型变形以适应肝脏轮廓。所提出的方法在MICCAI 2007肝脏分割挑战数据集上进行了评估。实验结果证明了该方法的有效性。