Systems Innovation Engineering, Graduate School of Advanced Technology and Science, The University of Tokushima, Tokushima 770-8506, Japan.
Med Phys. 2013 Nov;40(11):113501. doi: 10.1118/1.4823765.
Blood vessel (BV) information can be used to guide body organ segmentation on computed tomography (CT) imaging. The proposed method uses abdominal BVs (ABVs) to segment the liver through the portal phase of an abdominal CT dataset. This method aims to address the wide variability in liver shape and size, separate liver from other organs of similar intensity, and segment hepatic low-intensity tumors (LITs).
Thin ABVs are enhanced using three-dimensional (3D) opening. ABVs are extracted and classified into hepatic BVs (HBVs) and nonhepatic BVs (non-HBVs) with a small number of interactions, and HBVs and non-HBVs are used for constraining automatic liver segmentation. HBVs are used to individually segment the core region of the liver. To separate the liver from other organs, this core region and non-HBVs are used to construct an initial 3D boundary surface. To segment LITs, the core region is classified into non-LIT- and LIT-parts by fitting the histogram of the core region using a variational Bayesian Gaussian mixture model. Each part of the core region is extended based on its corresponding component of the mixture, and extension is completed when it reaches a variation in intensity or the constructed boundary surface, which is reconfirmed to fit robustly between the liver and neighboring organs of similar intensity. A solid-angle technique is used to refine main BVs at the entrances to the inferior vena cava and the portal vein.
The proposed method was applied to 80 datasets: 30 Medical Image Computing and Computer Assisted Intervention (MICCAI) and 50 non-MICCAI; 30 datasets of non-MICCAI data include tumors. Our results for MICCAI-test data were evaluated by sliver07 (http://www.sliver07.org/) organizers with an overall score of 85.7, which ranks best on the site as of July 2013. These results (average ± standard deviation) include the five error measures of the 2007 MICCAI workshop for liver segmentation as follows. Results for volume overlap error, relative volume difference, average symmetric surface distance, root mean square symmetric surface distance, and maximum symmetric surface distance were 4.33 ± 0.73, 0.28 ± 0.87, 0.63 ± 0.16, 1.19 ± 0.28, and 14.01 ± 2.88, respectively; and when applying our method to non-MICCAI data, results were 3.21 ± 0.75, 0.06 ± 1.29, 0.45 ± 0.17, 0.98 ± 0.26, and 12.69 ± 3.89, respectively. These results demonstrate high performance of the method when applied to different CT datasets.
BVs can be used to address the wide variability in liver shape and size, as BVs provide unique details for the structure of each studied liver. Constructing a boundary surface using HBVs and non-HBVs can separate liver from its neighboring organs of similar intensity. By fitting the histogram of the core region using a variational Bayesian Gaussian mixture model, LITs are segmented and measuring the volumetry of non-LIT- and LIT-parts becomes possible. Further examination of the proposed method on a large number of datasets is required for clinical applications, and development of the method for full automation may be possible and useful in the clinic.
血管(BV)信息可用于指导 CT 成像上的器官分割。所提出的方法使用腹部 BV(ABV)通过腹部 CT 数据集的门静脉期来分割肝脏。该方法旨在解决肝脏形状和大小的广泛变化,将肝脏与其他具有相似强度的器官分离,并分割肝脏低强度肿瘤(LIT)。
使用三维(3D)开运算增强薄 ABV。提取 ABV 并分类为肝 BV(HBV)和非肝 BV(non-HBV),只需少量交互,HBV 和 non-HBV 用于约束自动肝脏分割。HBV 用于单独分割肝脏的核心区域。为了将肝脏与其他器官分离,使用该核心区域和 non-HBV 构建初始 3D 边界表面。为了分割 LIT,通过使用变分贝叶斯高斯混合模型拟合核心区域的直方图,将核心区域分类为非 LIT 和 LIT 部分。根据混合物的相应分量扩展核心区域的每个部分,并且当达到强度变化或构建的边界表面时完成扩展,重新确认在肝脏和具有相似强度的相邻器官之间稳健地拟合。使用立体角技术在腔静脉和门静脉的入口处细化主要 BV。
该方法应用于 80 个数据集:30 个医学图像计算和计算机辅助干预(MICCAI)和 50 个非 MICCAI;30 个非 MICCAI 数据集包括肿瘤。我们的 MICCAI 测试数据结果由 sliver07(http://www.sliver07.org/)组织者进行评估,总体得分为 85.7,截至 2013 年 7 月,在该网站上排名最佳。这些结果(平均值±标准偏差)包括 2007 年 MICCAI 肝脏分割研讨会的五个误差度量,如下所示。体积重叠误差、相对体积差异、平均对称面距离、均方根对称面距离和最大对称面距离的结果分别为 4.33±0.73、0.28±0.87、0.63±0.16、1.19±0.28 和 14.01±2.88;当将我们的方法应用于非 MICCAI 数据时,结果分别为 3.21±0.75、0.06±1.29、0.45±0.17、0.98±0.26 和 12.69±3.89。这些结果表明该方法在应用于不同 CT 数据集时具有高性能。
BV 可用于解决肝脏形状和大小的广泛变化,因为 BV 为每个研究肝脏的结构提供了独特的细节。使用 HBV 和 non-HBV 构建边界表面可以将肝脏与其具有相似强度的相邻器官分离。通过使用变分贝叶斯高斯混合模型拟合核心区域的直方图,可以分割 LIT,并测量非 LIT 和 LIT 部分的体积。需要对大量数据集进一步检查该方法以进行临床应用,并且开发完全自动化的方法在临床上可能是可行和有用的。