Suppr超能文献

基于学习的方法用于在数字视网膜眼底照片中自动检测视盘。

Learning-based approach for the automatic detection of the optic disc in digital retinal fundus photographs.

作者信息

Wong D K, Liu J, Tan N M, Yin F, Lee B H, Wong T Y

机构信息

Institute for Infocomm Research, A*STAR, Singapore.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5355-8. doi: 10.1109/IEMBS.2010.5626466.

Abstract

The optic disc is an important feature in the retina. We propose a method for the detection of the optic disc based on a supervised learning scheme. The method employs pixel and local neighbourhood features extracted from the ROI of a digital retinal fundus photograph. A support vector machine based classification mechanism is used to classify each image point as belonging to the cup and retina. The proposed method is evaluated on a sample image set of 68 retinal fundus images. The results show a high correlation (r>0.9) with the ground truth segmentation, with an overlap error of 6.02%, and found to be comparable to the inter-observer variability based on an independent second observer segmentation of the same data set.

摘要

视盘是视网膜中的一个重要特征。我们提出了一种基于监督学习方案的视盘检测方法。该方法采用从数字视网膜眼底照片的感兴趣区域提取的像素和局部邻域特征。基于支持向量机的分类机制用于将每个图像点分类为属于视杯和视网膜。该方法在一个包含68张视网膜眼底图像的样本图像集上进行了评估。结果显示与真实分割具有高度相关性(r>0.9),重叠误差为6.02%,并且发现与基于对同一数据集的独立第二观察者分割的观察者间变异性相当。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验