Suppr超能文献

眼底照相中视盘苍白的自动计算机辅助分析。

Automatic computer-aided analysis of optic disc pallor in fundus photographs.

机构信息

Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.

Innovative Medical Engineering & Technology, Division of Convergence Technology, National Cancer Center, Goyang, Korea.

出版信息

Acta Ophthalmol. 2019 Jun;97(4):e519-e525. doi: 10.1111/aos.13970. Epub 2018 Nov 8.

Abstract

PURPOSE

Assessment of optic disc pallor in fundus photographs may be frequently misinterpreted due to the subjective nature of interpretation. We developed a fully automatic computer-aided detection (CAD) system for optic disc pallor using colour fundus photographs and evaluated the accuracy of the system.

METHODS

A newly proposed CAD system was developed for automated segmentation and image analysis of optic disc pallor, and a logistic regression model was developed for risk analysis. A total of 230 photographs with variable degree of optic disc pallor, and 123 normal optic discs confirmed by optical coherence tomography were tested for validation of the software. Sensitivity and specificity of the CAD system in automatic detection of optic disc pallor using colour fundus photographs were evaluated. The results of manual detection of optic disc pallor on fundus photographs by two independent ophthalmologists were compared with the efficacy of the CAD system.

RESULTS

The fully automated CAD system achieved a sensitivity of 95.3% and a specificity of 96.7% for detecting optic disc pallor in colour fundus images. The overall accuracy of the CAD system was 96.1%, which was superior to the results of manual detection by individual examiners.

CONCLUSIONS

We developed an automated CAD system that successfully detected optic disc pallor in fundus photographs. The proposed algorithm can assist the clinical judgement of ophthalmologists for detecting optic disc pallor in fundus photographs.

摘要

目的

由于眼底照片的解释具有主观性,因此对眼底照片中视盘苍白的评估可能经常被误解。我们使用彩色眼底照片开发了一种用于视盘苍白的全自动计算机辅助检测(CAD)系统,并评估了该系统的准确性。

方法

我们开发了一种新的 CAD 系统,用于对视盘苍白的自动分割和图像分析,并开发了一个逻辑回归模型进行风险分析。共测试了 230 张视盘苍白程度不同的照片和 123 张经光学相干断层扫描证实的正常视盘,以验证软件的准确性。评估了 CAD 系统在使用彩色眼底照片自动检测视盘苍白中的敏感性和特异性。比较了两名独立眼科医生对视盘苍白的眼底照片进行手动检测的结果与 CAD 系统的效果。

结果

全自动 CAD 系统在彩色眼底图像中检测视盘苍白的敏感性为 95.3%,特异性为 96.7%。CAD 系统的总体准确性为 96.1%,优于单个检查者的手动检测结果。

结论

我们开发了一种自动 CAD 系统,成功地检测到眼底照片中的视盘苍白。该算法可以协助眼科医生在眼底照片中检测视盘苍白的临床判断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验