Chan Rosa H M, Song Dong, Goonawardena Anushka V, Bough Sarah, Sesay John, Hampson Robert E, Deadwyler Sam A, Berger Theodore W
Center for Neural Engineering, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5464-7. doi: 10.1109/IEMBS.2010.5626536.
Delayed-nonmatch-to-sample (DNMS) task is memory-dependent. Hippocampal CA3 and CA1 cells were shown to be encoding the required spatial and temporal information to complete this task. In order to identify possible changes in neural population nonlinear dynamics during learning of the DNMS task, we have first modeled the input-output transformation of spike trains across brain subregions from learning animals using a multiple-input, multiple-output (MIMO) nonlinear dynamic model. The feedforward and feedback kernels describing the relations between hippocampal CA3 and CA1 subregions have shown significant changes at different training sessions.
延迟非匹配样本(DNMS)任务依赖于记忆。海马体CA3和CA1细胞被证明在编码完成该任务所需的空间和时间信息。为了识别在DNMS任务学习过程中神经群体非线性动力学可能发生的变化,我们首先使用多输入多输出(MIMO)非线性动力学模型对来自学习动物的跨脑区尖峰序列的输入-输出转换进行了建模。描述海马体CA3和CA1子区域之间关系的前馈和反馈核在不同训练阶段显示出显著变化。