IEEE Trans Neural Syst Rehabil Eng. 2018 Feb;26(2):272-280. doi: 10.1109/TNSRE.2016.2604423. Epub 2016 Aug 30.
In order to build hippocampal prostheses for restoring memory functions, we build sparse multi-input, multi-output (MIMO) nonlinear dynamical models of the human hippocampus. Spike trains are recorded from hippocampal CA3 and CA1 regions of epileptic patients performing a variety of memory-dependent delayed match-to-sample (DMS) tasks. Using CA3 and CA1 spike trains as inputs and outputs respectively, sparse generalized Laguerre-Volterra models are estimated with group lasso and local coordinate descent methods to capture the nonlinear dynamics underlying the CA3-CA1 spike train transformations. These models can accurately predict the CA1 spike trains based on the ongoing CA3 spike trains during multiple memory events, e.g., sample presentation, sample response, match presentation and match response, of the DMS task, and thus will serve as the computational basis of human hippocampal memory prostheses.
为了构建用于恢复记忆功能的海马体假体,我们构建了人类海马体稀疏多输入、多输出 (MIMO) 非线性动力模型。从执行各种记忆依赖型延迟匹配样本 (DMS) 任务的癫痫患者的海马 CA3 和 CA1 区记录尖峰列车。使用 CA3 和 CA1 尖峰列车分别作为输入和输出,使用组套索和局部坐标下降方法估计稀疏广义拉盖尔 - 沃尔泰拉模型,以捕获 CA3-CA1 尖峰列车转换背后的非线性动力学。这些模型可以根据 DMS 任务中多个记忆事件(例如样本呈现、样本响应、匹配呈现和匹配响应)期间正在进行的 CA3 尖峰列车,准确预测 CA1 尖峰列车,因此将作为人类海马体记忆假体的计算基础。