Punsawad Yunyong, Wongsawat Yodchanan, Parnichkun Manukid
Department of Biomedical Engineering, Mahidol University, 25/25 Putttamonthon 4, Salaya, Nakornpathom 73170 Thailand.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1360-3. doi: 10.1109/IEMBS.2010.5626745.
Practical issues such as accuracy with various subjects, number of sensors, and time for training are important problems of existing brain-computer interface (BCI) systems. In this paper, we propose a hybrid framework for the BCI system that can make machine control more practical. The electrooculogram (EOG) is employed to control the machine in the left and right directions while the electroencephalogram (EEG) is employed to control the forword, no action, and complete stop motions of the machine. By using only 2-channel biosignals, the average classification accuracy of more than 95% can be achieved.
诸如针对不同受试者的准确性、传感器数量以及训练时间等实际问题是现有脑机接口(BCI)系统的重要问题。在本文中,我们提出了一种用于BCI系统的混合框架,该框架可使机器控制更具实用性。利用眼电图(EOG)来控制机器的左右方向,同时利用脑电图(EEG)来控制机器的前进、无动作和完全停止动作。仅使用2通道生物信号,就能实现超过95%的平均分类准确率。