Suppr超能文献

闭环相位相关振动刺激可改善基于运动想象的脑机接口性能。

Closed-Loop Phase-Dependent Vibration Stimulation Improves Motor Imagery-Based Brain-Computer Interface Performance.

作者信息

Zhang Wenbin, Song Aiguo, Zeng Hong, Xu Baoguo, Miao Minmin

机构信息

The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China.

School of Information Engineering, Huzhou University, Huzhou, China.

出版信息

Front Neurosci. 2021 Jan 25;15:638638. doi: 10.3389/fnins.2021.638638. eCollection 2021.

Abstract

The motor imagery (MI) paradigm has been wildly used in brain-computer interface (BCI), but the difficulties in performing imagery tasks limit its application. Mechanical vibration stimulus has been increasingly used to enhance the MI performance, but its improvement consistence is still under debate. To develop more effective vibration stimulus methods for consistently enhancing MI, this study proposes an EEG phase-dependent closed-loop mechanical vibration stimulation method. The subject's index finger of the non-dominant hand was given 4 different vibration stimulation conditions (i.e., continuous open-loop vibration stimulus, two different phase-dependent closed-loop vibration stimuli and no stimulus) when performing two tasks of imagining movement and rest of the index finger from his/her dominant hand. We compared MI performance and brain oscillatory patterns under different conditions to verify the effectiveness of this method. The subjects performed 80 trials of each type in a random order, and the average phase-lock value of closed-loop stimulus conditions was 0.71. It was found that the closed-loop vibration stimulus applied in the falling phase helped the subjects to produce stronger event-related desynchronization (ERD) and sustain longer. Moreover, the classification accuracy was improved by about 9% compared with MI without any vibration stimulation ( = 0.012, paired -test). This method helps to modulate the mu rhythm and make subjects more concentrated on the imagery and without negative enhancement during rest tasks, ultimately improves MI-based BCI performance. Participants reported that the tactile fatigue under closed-loop stimulation conditions was significantly less than continuous stimulation. This novel method is an improvement to the traditional vibration stimulation enhancement research and helps to make stimulation more precise and efficient.

摘要

运动想象(MI)范式已在脑机接口(BCI)中广泛应用,但执行想象任务的困难限制了其应用。机械振动刺激已越来越多地用于提高MI性能,但其改善的一致性仍存在争议。为了开发更有效的振动刺激方法以持续增强MI,本研究提出了一种基于脑电图相位的闭环机械振动刺激方法。在执行来自优势手的食指运动想象和休息这两项任务时,对非优势手的食指给予4种不同的振动刺激条件(即连续开环振动刺激、两种不同的基于相位的闭环振动刺激和无刺激)。我们比较了不同条件下的MI性能和脑振荡模式,以验证该方法的有效性。受试者以随机顺序对每种类型进行80次试验,闭环刺激条件下的平均锁相值为0.71。研究发现,在下降阶段施加的闭环振动刺激有助于受试者产生更强的事件相关去同步化(ERD)并持续更长时间。此外,与无任何振动刺激的MI相比,分类准确率提高了约9%(P = 0.012,配对t检验)。该方法有助于调节μ节律,使受试者在想象任务中更专注,且在休息任务中不会产生负面增强,最终提高基于MI的BCI性能。参与者报告说,闭环刺激条件下的触觉疲劳明显低于连续刺激。这种新方法是对传统振动刺激增强研究的改进,有助于使刺激更精确、高效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe1/7868341/420175fae9cd/fnins-15-638638-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验