Covi Erika, Donati Elisa, Liang Xiangpeng, Kappel David, Heidari Hadi, Payvand Melika, Wang Wei
NaMLab gGmbH, Dresden, Germany.
Institute of Neuroinformatics, University of Zurich, Eidgenössische Technische Hochschule Zürich (ETHZ), Zurich, Switzerland.
Front Neurosci. 2021 May 11;15:611300. doi: 10.3389/fnins.2021.611300. eCollection 2021.
Wearable devices are a fast-growing technology with impact on personal healthcare for both society and economy. Due to the widespread of sensors in pervasive and distributed networks, power consumption, processing speed, and system adaptation are vital in future smart wearable devices. The visioning and forecasting of how to bring computation to the edge in smart sensors have already begun, with an aspiration to provide adaptive extreme edge computing. Here, we provide a holistic view of hardware and theoretical solutions toward smart wearable devices that can provide guidance to research in this pervasive computing era. We propose various solutions for biologically plausible models for continual learning in neuromorphic computing technologies for wearable sensors. To envision this concept, we provide a systematic outline in which prospective low power and low latency scenarios of wearable sensors in neuromorphic platforms are expected. We successively describe vital potential landscapes of neuromorphic processors exploiting complementary metal-oxide semiconductors (CMOS) and emerging memory technologies (e.g., memristive devices). Furthermore, we evaluate the requirements for edge computing within wearable devices in terms of footprint, power consumption, latency, and data size. We additionally investigate the challenges beyond neuromorphic computing hardware, algorithms and devices that could impede enhancement of adaptive edge computing in smart wearable devices.
可穿戴设备是一项快速发展的技术,对社会和经济的个人医疗保健都有影响。由于传感器在普适和分布式网络中的广泛应用,功耗、处理速度和系统适应性在未来的智能可穿戴设备中至关重要。关于如何在智能传感器中实现边缘计算的设想和预测已经开始,目标是提供自适应的极端边缘计算。在此,我们提供了一个关于智能可穿戴设备的硬件和理论解决方案的整体视图,可为这个普适计算时代的研究提供指导。我们针对可穿戴传感器的神经形态计算技术中的持续学习,提出了各种生物合理模型的解决方案。为了设想这个概念,我们提供了一个系统概述,其中预期了神经形态平台中可穿戴传感器的低功耗和低延迟场景。我们依次描述了利用互补金属氧化物半导体(CMOS)和新兴存储技术(如忆阻器器件)的神经形态处理器的重要潜在前景。此外,我们从占地面积、功耗、延迟和数据大小方面评估了可穿戴设备内边缘计算的要求。我们还研究了神经形态计算硬件、算法和设备之外可能阻碍智能可穿戴设备中自适应边缘计算增强的挑战。