Suppr超能文献

基于匹配追踪的癫痫发作自动检测:一项案例研究。

Automatic epileptic seizure onset detection using matching pursuit: a case study.

作者信息

Sorensen Thomas L, Olsen Ulrich L, Conradsen Isa, Henriksen Jonas, Kjaer Troels W, Thomsen Carsten E, Sorensen Helge B D

机构信息

Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3277-80. doi: 10.1109/IEMBS.2010.5627265.

Abstract

An automatic alarm system for detecting epileptic seizure onsets could be of great assistance to patients and medical staff. A novel approach is proposed using the Matching Pursuit algorithm as a feature extractor combined with the Support Vector Machine (SVM) as a classifier for this purpose. The combination of Matching Pursuit and SVM for automatic seizure detection has never been tested before, making this a pilot study. Data from red different patients with 6 to 49 seizures are used to test our model. Three patients are recorded with scalp electroencephalography (sEEG) and three with intracranial electroencephalography (iEEG). A sensitivity of 78-100% and a detection latency of 5-18s has been achieved, while holding the false detection at 0.16-5.31/h. Our results show the potential of Matching Pursuit as a feature extractor for detection of epileptic seizures.

摘要

一种用于检测癫痫发作起始的自动报警系统对患者和医护人员会有很大帮助。为此,提出了一种新颖的方法,即使用匹配追踪算法作为特征提取器,并结合支持向量机(SVM)作为分类器。匹配追踪和支持向量机相结合用于自动癫痫检测此前从未经过测试,这使其成为一项初步研究。来自6至49次癫痫发作的10名不同患者的数据用于测试我们的模型。3名患者通过头皮脑电图(sEEG)进行记录,3名患者通过颅内脑电图(iEEG)进行记录。已实现78 - 100%的灵敏度和5 - 18秒的检测延迟,同时误报率保持在0.16 - 5.31次/小时。我们的结果显示了匹配追踪作为癫痫发作检测特征提取器的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验